
 1

Emerging Social Networks in Peer-to-Peer Systems

Yamini Upadrashta
Department of Computer Science

University of Saskatchewan

57 Campus Drive

 Saskatoon, SK S7N 5A9

Canada

ysu156@mail.usask.ca
Supervisors: Prof. Julita Vassileva and Prof. Winfried Grassmann

ABSTRACT
The objective of this project is to simulate a Peer-to-Peer type of
environment with the JADE multi-agent system platform to
investigate the use of social networks to optimize the speed of
search and to improve quality of service in the Peer-to-Peer
environment. Our project uses the Gnutella protocol as a starting
point. The Gnutella protocol broadcasts messages for searching
files. This message passing generates much traffic in the network.
This degrades the quality of service. We propose a model where
each peer has a “ friends list” , for each category of interest. Once
peers generate their “ friends list” , they use these lists for searching
files in the network. The model has been implemented and some
initial experiments have been performed.

KEYWORDS
Peer-to-Peer systems, social networks, multi agent systems

1. INTRODUCTION
The research area Peer-to-Peer (P2P) systems are fairly new in the
field of distributed computing. P2P systems are typically
decentralized, distributed and anonymous systems. One common
protocol for P2P computing is Gnutella, which broadcasts
messages to all the peers in the path of the query [8]. A querying
peer sends the query to all of its peers, who in turn send the query
to all of their peers until the query reaches a peer that produces a
hit matching the query. This peer sends back a reply containing its
address, the size of the file, speed of transfer, etc. The reply
traverses the same path but in reverse order back to the querying
peer. This passing of messages generates much traffic in the
network, often leading to congestion and slow responses. Thus,
the quality of service becomes poor, since the responses to queries
are delayed.

We propose a model based on social network to alleviate this
problem. Just as people have social contacts in different areas and
use them accordingly, the model generates a “ friends list” for each
category of interest to the user. This list is used to send the initial
messages when searching files in that category. We attempt to
show that this model achieves responses faster than standard
Gnutella. This paper is organized as follows. Section 2 gives an
overview of the areas of peer-to-peer networks, social networks
and the application of social networks in peer-to-peer networks.

The conceptual design of our model is explained in section 3 and
the conceptual design of the simulation is described in section 4.
Details of the experimental and simulation parameters and some
preliminary data are given in section 5. Section 6 concludes the
paper and gives directions of future work.

2. PREVIOUS WORK
Peer-to-Peer systems are usually defined as distributed systems
where peers or entities share computer resources and services by
direct interaction among themselves [9]. There is no central server
in P2P systems, unlike client-server distributed systems. Client-
server systems are defined as a single or small number of servers
connected to many clients. Clients issue a request and the server
provides the client with the appropriate service. The resources that
the peers share in the P2P systems could be files, CPU power, and
disk space. Efficient searching of files is the key to achieve
success in such networks. The next section explains how a search
is performed in several popular P2P systems.

2.1 Peer-To-Peer Networks
P2P systems are characterized as robust, anonymous, flexible and
self-organized systems [9]. Some of the popular P2P systems are
Napster, Gnutella, FreeNet, KaZaa, and Limewire. Most of these
systems are for music sharing and file sharing. P2P systems can
also be used to share computing resources as in SETI@HOME.
Some of these systems are explained below.

2.1.1 Napster
Napster [10] was a P2P system mainly for music sharing. It has a
central server that keeps track of all the peers in the system. When
a peer joins the network it advertises to the server the files it is
willing to share with other peers. Thus, the server has information
about all the peers and their files and maintains a centralized
directory of the shared files. Request for files are send to the
server. The server looks in its directory and finds the peer who has
the file and sends the peer’s address to the querying peer. The
peers in the system can specify certain peers that they prefer to
contact. The server takes the preference into consideration before
sending a list of peers address to the querying peer. The querying
peer than contacts any or all of the peers from the list. A file
transfer takes place between them if both of them are in

 2

agreement. The search is very fast since the central server has all
the information about the peers. Fig. 1 shows the centralized
model of Napster.

Figure 1: Napster ’s centralized model

The server thus only sends the addresses of the peer, which have
the file. File transfer takes place without the server participating.
But problems that plague all central systems, such as bottlenecks
at the server, are still possible. Since the actual file transfer does
not involve the server, some of the problems happen only when
there are too many peers querying the system and the server is
looking up its directory. Nevertheless, Napster was very efficient
and robust. As the files are stored and transferred between peers,
it is a P2P system. The only problem with Napster was that there
was no anonymity in the system. The server holds all the peers’
addresses and an index of their shared files in its directory. Since
music copying is illegal under the copyright law, one could track
the peers involved in sharing and downloading music files, by
spoofing the server. Napster was shut down.

2.1.2 Gnutella
Gnutella [4] is a completely decentralized P2P protocol. Many
systems have implemented this protocol to enable file sharing.
Most of those systems like Limewire and KaZaa are music sharing
systems. Since Gnutella is decentralized, there is no way that a
peer in the system knows if a file exists and which peers have it.
For this reason, Gnutella uses a broadcast protocol to search for
files in the system. One problem here is that a peer has to know at
least one other Gnutella peer to send requests to, but since the
system is decentralized, there is no central server or peer that can
provide peer addresses. This problem has been solved by
publishing the addresses of some designated Gnutella peers on a
website. When a peer enters the network, it contacts a designated
peer and receives a list of other peers that have recently entered
the network. A certain number of these (usually 7) become the
neighbourhood of this peer. When the peer needs to send a query,
it sends it to its neighbourhood. If those peers do not have the file,
they in turn forward the request to their neighbourhoods. Fig. 2
depicts a simplified interaction of peers in the network. The
different lines in the figure show the different stages of query
propagation. In Fig. 2, Query Peer1, in the left corner, initiates the

query and sends it to Peer2. Peer2 forwards the query to Peer7,
Peer8 and Peer9. And so on.

Thus, it can be seen that a single query generates an exponential
number of messages in the system. To limit the number of
messages going through the system, the protocol puts a limit on
the depth to which a query can be propagated (or the number of
hops the query is forwarded)- a parameter called “Time To Live”
(TTL). The TTL of a query is decremented with each forwarding
and as soon as the TTL expires the query is no longer forwarded.
Replies satisfying the query are sent back to the originator along
the same path traveled by the query. This ensures anonymity on
both sides since no single peer knows who requested and who
responded to a particular query. In this way anonymity is
preserved. At any time only queries and replies are circulating in
the system.

Figure 2: Gnutella’s decentralized model

Gnutella is a robust system since the failure of any peer in the
network does not affect the system. However, Gnutella leads to a
lot of traffic, slow as a consequence, and to not guaranteed
responses and poor quality of service. Even if a file exists in the
system some peers may not be able to find it, because the TTL
restricts the maximum number of hops along each path. Also,
there is no way of knowing if a file exists in the system since there
is no directory of the shared files in the network.

2.1.3 FreeNet
FreeNet [3] is based on the model of document routing. It is a
decentralized file sharing system in which the anonymity of the
peers is maintained. If the files exist in the system, they are
located faster than in Gnutella. All peers in the network have peer-
ids and have to contribute some disk space to the network so that
files can be stored there. When a peer wants to store and share a
file in the network, the file is given an id computed from the name
of the file and its description using a hash function. The file, along
with the file-id is propagated through the system. The file is

Server

Peer1

Peer2
Peer4

Peer5

Peer3

Legends:

 Publish Information and search for files

Transferring of files

Legend: Query Propagation

 hop 1 hop 4

 hop 2 hop 5

 hop 3 hop 6

Peer7

Peer8
Peer9

Peer5

Peer6

Peer11

Peer12

Peer10
Peer13

Peer2
Peer3

Query
Peer1

Peer4

 3

routed in the network and stored in the space contributed by the
peer whose peer-id is the closest to the id of the file being stored.
Thus, files with similar or close ids are clustered together in the
network. Likewise when a query for a file is issued, the request is
forwarded to the peer whose id is closest to the file-id being
searched. Just like in the Gnutella protocol, at least one peer in the
network has to be known to a new peer so that a query could be
forwarded in the network. As in Gnutella, a few persistent peers in
the network are published on the FreeNet website. From the
system design, it can be seen that searches are faster since the
peers send their request directly to the peer whose id matches
closely the querying file-id. When a result of the query is found,
the file is send through the query path and the file-id is stored in a
local routing table. Subsequent queries are first checked in the
routing table and the query is routed to the peer closest to that of
the file-id. One problem in this system is that files storage is not
persistent. Peers contribute storage space from their resources. If
a peer reaches its full capacity and a file has to be stored at that
location then the system uses the Least Recently Used (LRU)
method to delete files and store the new one. There is a high
probability that not frequently requested files will be dropped
from the system. Another constraint is that one has to know the
file name or exactly the same keywords that were used when the
file-id was generated.

P2P systems like Napster, Gnutella and Freenet have been
successful but there are some common problems with all the three
systems. Napster provides a good speed for searching and
retrieving music files but it was based on a centralized model and
peers could be tracked easily which led to its shutdown. The
Gnutella protocol is completely decentralized, but due to its
flooding search algorithm, systems using Gnutella have
performance problems, like huge network traffic, slower response
and congestion. Using routing-based algorithm, as in Freenet,
imposes limitations on users, for instance they have to know the
semantic or content of the files they need to start searching, since
exact file-ids are needed. None of these systems exploit the fact
that people with similar interests are likely to store files that
would be useful for all other people sharing those interests.
People with similar interests form communities that allow them to
exchange resources more efficiently.

2.2 Improving Search in P2P Systems
P2P systems are currently being studied to find efficient ways in
searching for files or resources in the network. Some work done
on optimizing the search for files is described below. A system
called “Buddy Web” [19] was built in which routing is done
based on similarity of interest. The main reason for building “ the
Buddy Web” system was to reduce the amount of traffic in and
out of the university network, which costs the university money.
For a given query, there is always the possibility that someone
else on campus has already done the same type of query and has
already received results for it. By caching these results and
searching through them, the university can reduce cost and utilize
the network better. Similarity, used for routing inside the network,
is calculated by searching through the meta-data of file, e.g. the
title tags downloaded by the user. Searching through the file for
words selected by the user while browsing through the file
contents can also be taken as indication of the important keywords
for that file. The key words are stored in a vector. By summing up
points for the words, which have already been assigned some

weight by some weighing schemes, a calculation of interest is
performed. A peer calculates similarity with other peers by
comparing its own interest value to those of others. When a peer
is querying, the query is first sent to the underlying network,
called BestPeer [19], so that it can be routed first within the
network to get results. The system sends the query to those peers
whose similarity values are found to be close to this peer. Once
results are found they are send to the querying peer. If the system
does not find any results then it sends the request outside the
network. This model works only for internal routing and not for
external routing. An external search takes place in the traditional
manner.

Another work on efficient search mechanism is the BestPeer
system. BestPeer is a P2P network prototype, implemented in a
university setting [13]. The main aim of this network is code-
shipping and data-shipping. It is a completely decentralized
network with many peers and a few servers. These servers
essentially work like naming servers giving each registered peer in
its network a unique name so that the rest of the peers can identify
it. We are mainly interested in the BestPeer file-sharing model. In
their model peers query for some file and get back some results.
The peers, which returned the maximum number of results, are
kept in a list. If after some queries the querying peer finds that
there are some peers who return many answers it retains them in a
list. Peers are retained in a list if they return many results or if the
number of hops to a peer is large. The authors speak of quality of
results when deciding about retaining peers but give no indication
of how the peer can distinguish between poor and good results
without user’s input. Resources at each peer are different. Each
time a peer changes its query type there is no guarantee that the
same peers will answer for the rest of the queries. The best peer
list keeps changing as it sees new peers giving results each time.
The model takes into consideration some kind of similar interest
among peers, but it is not defined explicitly in the model as to
what interests are and how they are formed. Their assumption of
the topology of the network, for testing their model and reporting
results, is a tree-topology. But in P2P systems peers connect,
disconnect and reconnect randomly. A tree topology is very
unlikely to be formed.

To provide better service in P2P systems research is being done to
investigate how the traffic generated due to the broadcast protocol
in Gnutella system can be minimized while still preserving the
quality of search results. One such system is finding “good peers”
in a P2P system [15]. Peers that have sent a “good” response to a
peer’s request are entered in a special list by the peer, following
the assumption that these peers may also have good resources for
subsequent queries in this area. And so the peer now sends
subsequent requests to the peers in its list. This reduces traffic in
the network as peers now send queries selectively to other peers.
The authors show that this selective dispatching of queries does
not affect the search results at the end and one gets good
responses in short time. However, a list of “good peers” is related
to one search criterion only. When the peer switches its search to
another criterion, broadcasting to all peers will occur again.
Building of a “good peers” list for a given search criterion can
happen only after a certain delay, which is needed so that the peer
can register new useful peers in that search cycle. This works if
the user is consistently searching for a single criterion several
times in one session. However, users search typically for more

 4

than one criterion at a time. Therefore the model will keep
generating huge traffic in the network as the user switches search
criteria.

2.3 Social Networks
People have already started considering and applying social
networks concepts for optimizing search in P2P systems. Social
Networks are groups of people, be it in a social setting or an
organization connected by relationships [21]. Stanley Milgram, in
the late 1960’s, did one of the first experiments to investigate
social networks [11]. In his experiment he addressed letters to a
particular stockbroker in New York and gave them to people
randomly picked at locations in the United States far away from
that of the final receiver. The condition for passing the letter, so
that it reaches the addressee, was that one could post it only to
people they knew personally by first name. Eventually most of the
letters reached the destination, and the average number of hops
was six. Thus the “six degrees of separation” phenomenon came
into being.

Studies have shown that social networks benefit people in
everyday lives. They are useful in propagating information and
also in finding information. This fact was exploited to develop an
expert system where experts in a subject are located on web [7].
The system was build to get expert advice in some fields. Users
who registered in the system had to fill a form about their
publications. In this way the system gained knowledge about
social networks based on co-authorship papers. This allowed the
system, even when some experts themselves would not have the
time or may not like to register in the system, to be referred to as
experts by the system since they were found by co-authorship in
other expert’s publication.

Studies have shown that “weak ties” are more beneficial in a
network than “strong ties” . Weak ties are among those people that
are not in the same community or coalitions. Strong ties on the
other hand are those that connect people in the same community.
People involved in strong ties usually interact frequently and
share equal knowledge. The benefit of people with weak ties is
that they provide information about experts or knowledgeable
people that are not in the community, therefore spreading
knowledge across communities [5].

Social networks are also used to study the interaction pattern
between groups of people in a certain context. They help in
understanding to what degree the behavior of an individual is
influenced by constraints in their environment and how
individuals use their social network for their benefit [20]. It has
been found that, if possible, people do manipulate circumstances
such that they benefit in socializing with their choice of people
[12]. From this we can observe how social network once
established can be used for ones’ own benefit.

Social networks can be studied by computer simulation to
investigate the evolution of societies of artificial agents simulating
real people. Simulations allow to study patterns, diversity and
behavioral changes in groups of people due to changes in its
environment [14]. Social networks can also be studied using
visualization techniques to show how strong are the relations
between people in a group and between groups of people [2]. The

visualization techniques involve different colors depicting the
strength of the relations between people. They also have
techniques allowing people in relations to be differentiated, for
example, different shape of nodes for distinguishing genders.

P2P systems have also been studied in the area of Multi Agent
Systems (MAS). Here each peer is assumed to be an agent that
makes autonomous decisions and communicates with other peers /
agents. The communication follows patterns of weak ties and
strong ties. Peers involved in weak ties were found to be more
valuable as they have more contacts with other peers. These peers
provide referrals and expertise in the form of forwarding requests
to other peers capable of responding correctly [18].

3. CONCEPTUAL DESIGN
In this study we propose a model in which peers keep a list of
other peers who they see as being similar to them in some
criterion. Each peer can have very many different criteria and they
can have a list of peers associated with each criterion. The system
has a number of peers, and each peer has some files. Peers share
these files with other peers in the network and these files are
representative of the peers’ interests. The files are broken down
according to categories. Peers can show interest in different
categories. A category is defined as an area characterized by a set
of topics or keywords [17]. For example, topics like distributed
databases, and peer-to-peer systems characterize the area of
distributed systems, which is a category in our model. There are
about n categories in the system and each peer has interests in a
few of these categories m, i.e., m < n. In real life both categories
and files would have descriptive titles, say strings. Here, we
represent both categories and files by numbers. For instance, file
25 may belong to category 2.

From time to time, a peer wants to search and have access to files
of other peers. In order to do this efficiently, each peer keeps a list
of friends, for each category. A peer randomly, with a higher
probability, generates a query in one of its interest categories and
with a lower probability in other categories. A peer is not allowed
to request a file it already has in its resources. This restriction is
based on the assumption that one would not request that one
already has. There is, however, no restriction on how many times
a peer can request a file. This request results in a hit, if the
recipient has the requested file, or it is passed on to other peers, if
its TTL has not expired yet. The peer originating the query waits
for responses to its file request from other peers in the network.

All hits are counted. The peer who requested the file updates its
“ friends list” by adding the responding peer. The idea for keeping
the responding peer in a list is that if a peer has files pertaining to
a given category, it probably is interested in that category.
Therefore it may have additional resources in the same category.
So it is quite possible that this peer would be responding again to
another query in that category.

All peers in the system create “ friends list” in this way. Hence the
queries are more likely to be forwarded to peers with similar
interest. Thus, the chances of getting replies back faster are
higher. By keeping “ friends list” for each category, a peer
querying in a given category sends messages to mostly those peers

 5

interested in the same category and avoid broadcasting in the
network. This reduces traffic in the network.

The “ friends list” is updated by the following mechanism. After
the interaction or file transfer takes place, based on the
corresponding interaction value (success or failure), the peer
calculates the strength of the relationship for that peer. The
formula to calculate the strength of the relationship is given in
Fig. 3 [17].

Figure 3: Formula to calculate strength of a relationship

where α is a value between 0 and 1, we have used a conservative
value of 0.8 and experience is a variable with two pre-defined
values denoting success and failure of the interaction respectively.

Another way to calculate and learn about relationships might also
be to keep a sum of all experiences, as defined above, and to
compute the average experience with a peer by dividing the sum
of experiences by the number of experiences.

We have chosen the first formula to calculate strength of
relationship. The strength of the relationship is maintained
between 0 to +1, where 1 denotes a strong relationship. If the
strength is higher than 0.2 then it is stored in the “ friends list” of
the peer for this category, otherwise it is deleted from the list.

4. EXPERIMENTAL DESIGN
Our experimental model has some modifications as compared to
the standard Gnutella in order to simplify the protocol for the
simulation. The first modification is that peers who have the
requested files send directly responses back to the peer who
originated the query and not through the queried path. This
reduces the overall time for a reply to come back to the peer
originating the query as compared to Gnutella and it leads to non-
anonymity in the system, as the owner of the file and the
downloading peer are known. Assuming that the files shared in
this system are publicly available, not copyrighted and not
obscene documents, anonymity that is generally valued highly in
P2P systems can be parted with to achieve better quality of
service. The second modification is that the file is sent back by
the responding peer to the peer who originated the query as the
response, i.e. there is no “query hit” response sent back, followed
by a transaction for downloading the file initiated by the peer who
originated the query, but the whole interaction happens at once.
The interaction between peers can result in success or failure. The
failure can be due to a connection failure, poor quality of the
resource or irrelevant response to the query. We model success of
interaction as a boolean variable that is generated randomly. This
modification is for the entire system and only for the purpose of
our simulation. We compare results of the version with “ friends
list” with the version of without “ friends list” on the same
modified system simulation. Hence our comparison results are not
affected by this modification.

To maintain the same initial configuration of the system, we
assume that peers do not replicate the file they have requested.
The file distribution in the system therefore remains unchanged
during the simulation. For the purpose of this project the system
assumes that all the peers created at the start of the system are
active during the entire simulation. This assumption makes the
simulation less complex. Following the same assumption, the
number of peers in the system does not change during the
simulation but can be changed for different simulation runs.

Peers generate queries that are random natural numbers,
F = 1,2,3… representing files. The files (i.e., the numbers
representing them) are classified into categories, also represented
by numbers C = 1,2,3. The file classification in categories is
predetermined. The number of files per category can be changed.
To keep the model simple, we have an equal distribution of files
into categories.

Other values chosen for the simulation are: three categories of
interest in total in the system, from these three categories in the
system, each peer is assigned two categories of interest randomly.
Each peer stores ten files in their categories of interests. The
values were chosen in such a manner so that there would be
enough interactions between the peers to generate, maintain and
use their “ friends list” . If, for instance, the number of categories
were six, then, if each category has ten files there would be sixty
files. If there were ten peers in the system, seven queries from
each peer would be needed to generate two queries in the same
category. For ten peers the minimum number of queries needed to
generate a “ friends list” and to use this list would be at least
seventy queries. With our settings the minimum number of
interactions in the same category for a peer if there are three
categories would be three, for the same number of queries, i.e.,
seventy in the system. From this calculation we would have a
good data set by having three categories in the system.

When the system starts there are no relationships among the peers
in the system. This is because there have been no interactions
between them as yet. Interactions happen as queries are generated
and responses come. Queries are generated by the system by
randomly choosing peers from the list of all peers in a fixed
interval of time. The peer randomly selects a category from its two
categories of interest with 90% probability and 10% probability in
other categories. Once the category is chosen, the file number to
be queried is randomly generated. The peer then requests the file
from other peers. Those peers search through their resources and
return a “hit” message to the queried peer directly if it finds it. A
“hit” message is equivalent to downloading the file. No more
messages take place between the responding peer and peer
originating the query with regards to that query. Each query is
identified by a unique id, used to keep track of which query is
being processed, and the originator of the query so that files can
be send back to that peer. The unique id also helps to discard the
query if the query gets forwarded more than once to any peer.
This way the peers do not have to process the same query once
again. This reduces the number of messages circulating in the
system.

The peer originating the query keeps track of which peers
responded to each of its queries and also keeps track of the
outcome of the interaction (generated randomly). It then

relationship_new =

 α * relationship_old + (1- α) * experience

 6

calculates strength of the relationship with that peer. After that it
stores the peer in a relation vector containing peer id, the strength
and the category of the query. If the strength of the relation of a
peer in a category goes below 0.2 that peer will be dropped from
the “ friends list” in this category. If the peer is a member of other
‘ friends list” of the requesting peer, in different categories of
interests, these lists will not be affected.

Our hypothesis that the “ friends list” allows reduced search time
and reduces traffic is tested via simulation. During the simulation
we collect data to find the average time taken for replies. We hope
to show that the “ friends list” reduces the time for searches.

 The model allows various possible initial configurations along
two main dimensions. The first dimension is the number of
categories in a peer:

1) Each peer has equal interest in all the categories
assigned to that peer.

2) Each peer has different degree of interest in the different
categories of interest assigned to that peer.

The second dimension is the file distribution among peers:

1) Equal number of files is allotted to all peers in the
system.

2) The files are distributed so that some peers get a larger
number of files. These become large peers. Other peers
get fewer files and so they become small peers.

The model was tested with one configuration: equal interest in
both the categories in the peer and equal number of resources in
each peer.

5. PRELIMINARY RESULTS
The simulation has been implemented in Java on JADE [6], a
Multi-Agent platform. There are other multi agent platforms that
can be used, for example, FIPA-OS and the Agent Development
Kit (ADK), but JADE was chosen because of its ease of use.
JADE is FIPA-Compliant, multi agent platform specification
using Java. JADE [1] has the abstract notion of behaviours
associated with each action. The communication between the
agents in Jade is through ACL (Agent Communication Language).
Each agent in Jade is a thread. When an agent receives an ACL
message, the agent retrieves the relevant section of the message
interprets the message and carries out appropriate methods or
tasks according to the interpretation of the message.

The peers in the simulation are represented as Jade Agents.
Simulation and testing was done on a windows PC machine with
523 KB RAM and Win 2000. Ten peers were created in the
system and these peers interacted among themselves by querying
and responding. There were three categories in the system in total,
and ten files in each category (a total of thirty files in the system).
Each peer was interested in two fixed categories. The simulation
initially needed approximately 30 seconds to completely set up
the peers and its resources. Hence, queries were generated at a 30
seconds interval. A random generator picks the peer that would
initiate the query. The query is generated randomly in one of the
two categories of interest of the peer. The peer originating the
query records the time at which the query was sent. When a reply

comes, the peer notes the time at that moment and then calculates
the round trip time (RTT) defined as the total time elapsed from
sending the query until the reply came through. This data is
recorded in a file.

As described previously, when the system starts there are no
“ friends lists” for any peer. A peer generates a query and if “hit”
messages are received, the querying peer builds a “ friends list” for
that category of interest. However, it may not be the case that all
the peers in the system generated queries in the simulation or
gotten “hits” for their queries. As a result those peers could not
build “ friends lists” . Some peers may have built “ friends lists” for
a category but did not generate queries again in that category to
use their “ friends lists” . Thus, in each simulation we have some
peers who built “ friends lists” and used these lists, some peers
who built “ friends lists” but could not use them and some peers
who could not build “ friends lists” for any category. The
simulation results show RTT recorded by two peers, who have
been found to build “ friends lists” and used them for searching in
subsequent queries.

The simulation was run three times to ensure that the random
generation of queries by peers does not affect our results. The
configuration was same for all the three simulations, i.e., the peers
had equal interest in the two categories assigned to it and each
peer had the same number of files to share. The data obtained
from this experiment is presented in Table 1.

Table 1: Values of the Round Tr ip Time (RTT)

Run

without list

RTT (ms)

with list

RTT (ms)

1 315.50 175.33

2 431.00 289.17

3 378.50 152.75

Table 1 shows the average values for the RTT for queries issued
by peers with and without a “ friends list” for the three simulation
runs. The data in second (“without”) column of Table 1 is the
average round trip time for 2 queries when the peer did not have
the friend’s list. The data in the third column of Table 1 is the
average round trip time for 2 queries when the peers have list of
friends’ for that category. The queries for both columns were in
the same categories.

It can be seen that the time for a query to get results back when
the peers keep no “ friends list” is higher as compared to the time
taken when the peers keep “ friends list” and send queries directly
to peers in the friends’ list. This is because peers who keep
“ friends’ list” in a given category have a greater likelihood of
accessing relevant resources in that category by querying first its
friends rather than sending their requests to random peers. Since
all peers are homogeneous, the friend-peers that receive the query
will forward it further to their friends who they know are
interested in that category. In this way peers who share similar
interests are queried first (of course, if they are available) and the
likelihood of one of them having the file is higher than that of

 7

random peers. Therefore, the round trip time of the queries is
reduced.

6. CONCLUSIONS AND FUTURE WORK
The objective of the project was to investigate the use of social
networks to optimize search and quality of service in the Peer-to-
Peer environment. We simulate a Peer-to-Peer type of
environment with JADE Multi-agent system platform. In our
model each peer builds a “ friends list” , for each category of
interest. Once peers generate these “ friends lists” , they use them
for searching files in the network. From the results obtained we
see that creation of “ friends list” helps in reducing search time for
queries.

Future work would be to see how the system behaves when peers
are programmed to learn from other peers’ queries. At present
each peer discovers on its own about other peers by sending a
query and building “ friends list” for that category. However, a
peer can also learn by observing the traffic in the system, i.e., by
keeping track of queries passing through it and the peers’ that
initiated these queries, and adding those peers to its “ friends list”
in that category.

Another area for future work would be to see the impact on
system’s behaviour when peers make decisions to maximize their
utility. Peers can make decisions depending on the availability of
resources (storage, bandwidth, CPU) to “specialize” either as a
“middleman” peer, keeping a large list of friends, that have the
documents, or to specialize as a “server” peer, that stores the
actual documents. All peers in the system may not have large
storage space to keep files and enough bandwidth for giving the
files to other peers. Each peer can maximize its own utility based
on storage space and available bandwidth and decides whether to
keep friends list for categories or to store documents. Storing
documents would utilize more disk space as compared to keeping
lists of peers to contact. As a result it is possible that most peers
would prefer to keep friends lists. But when some peers utilize
certain documents frequently, it would be an incentive for them to
store and share these documents rather than having to download
them each time these documents are needed. We can create a
system with utility maximizing peers and explore how networks of
specialized interest groups are formed and track peers’
specialization within various lists.

7. REFERENCES
[1] Bellifemine, F., Poggi, A. and Rimassa, G. (Apr. 1999),

“JADE – A FIPA- compliant agent framework” , Proceedings
of PAAM'99, London, 97-108.

[2] Freeman, L. C. (2000), “Visualizing Social Networks” ,
Journal of Social Structure, Vol. 1, No. 1.
http://zeeb.library.cmu.edu:7850/JoSS/article.html

[3] FREENET, 2001, www.freenetproject.org.
[4] GNUTELLA, 2001, http://gnutella.wego.com.
[5] Granovetter, M., (1973), “The Strength of Weak Ties” ,

American Journal of Sociology, Vol. 78, 1360-1380.

[6] JADE 2.61: http://sharon.cselt.it/projects/jade/
[7] Kautz, H., Selman, B. and Shah, M. (1997), “Referral Web:

Combining Social Networks and Collaborative Filtering” ,
Communications of the ACM, Vol. 40, No. 3, 63-65.

[8] Krishnamurthy, B., Wang, J. and Xie, Y., (2001), “Early
Measurements of a Cluster-based Architecture for P2P
Systems”, Proceedings of the First ACM SIGCOMM
Workshop on Internet Measurement Workshop, San
Francisco, CA, 105-109.

[9] Milojicic, D. S., Kalogeraki, V., Lukose, R., Nagaraja, K.,
Pruyne J., and Richard, B. (2002), “Peer-to-Peer
Computing” . Internal Report Hewlett Packard, March 8.

[10] NAPSTER, 2001, www.napster.com.
[11] Newman, M. E. J. (2000), “Models of the Small World: A

Review”, Journal of Statistical Physics, 101, 819-841.
[12] Newcomb, T. M., Turner R. H. and Converse P. E., (1965), “

Social Psychology: The Study of Human Interaction” , Holt,
Rinehart and Winston, New York.

[13] Ng, W., Ooi, B. and Tan, K., 2002, “BestPeer: A Self-
Configurable Peer-to-Peer System” , In Proceedings of the
18th International Conference on Data Engineering, San
Jose, CA, 272.

[14] Pearson, D. W. and Boudarel, M. R. (2001), “Pair
Interactions: Real and Perceived Attitudes” , Journal of
Artificial Societies and Social Simulation, Vol. 4, No. 4,
http://www.soc.surrey.ac.uk/JASSS/4/4/4.html.

[15] Ramanathan, M. K., Kalogeraki, V. and Pruyne, J. (2001), “
Finding Good Peers in Peer to Peer Networks” , Hewlett
Packard Technical Reports.

[16] Sripanidkulchai, K., (2001), “The popularity of Gnutella
queries and its implications on scalability” , Featured on
O'Reilly's www.openp2p.com website, February 2001.

[17] Vassileva, J. (2002), “Motivating Participation in Peer to
Peer Communities” , Proceedings of the Workshop on
Emergent Societies in the Agent World, ESAW'02,
Madrid, Spain.
http://www.ai.univie.ac.at/%7Epaolo/conf/esaw02/esaw02ac
cpapers.html.

[18] Venkataraman, M., Yu, B. and Singh, M. P. (2000), “Trust
and Reputation Management in a Small World Network” ,
Proceedings of Fourth International Conference on
MultiAgent Systems, 449-450.

[19] Wang, X., Ng, W., Ooi, B., Tan, K. and Zhou, A., (2002),
“BuddyWeb: A P2P-based Collaborative Web Caching
System”, a position paper in Peer to Peer Computing
Workshop (Networking), Pisa, Italy.
http://xena1.ddns.comp.nus.edu.sg/p2p/BuddyWeb.ps.

[20] Webster, C. M., Freeman, L.C. and Aufdemberg, C. (2001),
“The Impact of Social Context on Interaction Patterns” ,
Journal of Social Structure, Vol. 2, No. 1.
http://moreno.ss.uci.edu/webster.pdf.

[21] Wellman, B., “An Electronic Group is Virtually a Social
Network” , In Sara Kiesler ed. (1997), Culture of the Internet,
Lawrence Erlbaum, Hillsdale, NJ, 179-205.

