
Fault-Management in MAS
Peng Xu

University of Saskatchewan
57 Campus Drive

Saskatoon, Saskatchewan, S7N 5A9
pex066@mail.usask.ca

ABSTRACT
Despite the considerable efforts researching and developing
Multi-Agent Systems (MAS) there is a noticeable absence of
deployed systems. In the past the MAS research community
ignored this problem - arguing that it is not a genuine MAS
problem and consequently of lesser importance than other
unsolved issues like cooperation, coordination, negotiation and
communication. However, as the field matures, empirical
evaluations of techniques and systems are more commonly used
and deployment issues like the management of a MAS become
increasingly important.
This paper has two aims; firstly it introduces and structures the
area of fault-management in MAS by identifying the key issues
and providing an overview of the existing approaches from MAS
and related areas. Secondly it introduces a generic framework for
fault-management in MAS that has been successfully tested in a
large scale MAS.

General Terms
Multi-Agent Systems, Management

Keywords
Fault-Management, Event-Streams, Fault Identification

1. Motivation
MAS are decentralized self-organizing systems consisting of
autonomous entities called agents that are designed to solve tasks
by cooperating with each other. Using structured messages for
communication the agents negotiate and coordinate in a
decentralized manner the actions required to solve a common
task.

Decentralization and self-organization ensure that there is no need
for central coordination and consequently no single point of
failure resulting in a more robust design. But with the absence of
a centralized coordination it becomes difficult to determine the
current state of the system or to predict the effects of actions. This
difficulty concerning the determination and prediction of states is
made worse by the fact that the functional dependencies between

the agents change over time as a result of negotiations at run-time.
As a result the MAS appears to behave chaotically. This in turn
contributes to the lack of successful deployments.

To overcome these difficulties it is necessary to introduce
management functions that will support the monitoring and
controlling of individual agents as well as the MAS. ISO [1]
defines five basic management functions for any distributed
system namely: accounting management, configuration
management, performance management, security management
and fault management (Figure 1).

Multi-Agent
 System

Configuration
 management

 Fault
management

 Accounting
management

 Security
management

Performance
management

Figure 1: MAS Management Functions

While all five are important management functions I view fault
management as most relevant in the deployment of a MAS based
on deployment experiences [2]. Since agents are autonomous
entities capable of constantly changing their functional
interdependencies it is difficult to detect agent failures and to
prevent them from spreading (fault propagation) which often
leads to a complete MAS failure. Especially in environments
which demand minimal downtimes e.g. information systems the
early detection, isolation and clearance of faults becomes
essential for a successful deployment.

The focus of this paper is on fault management (fault detection) in
MAS and is organized as follows. Section 2 provides an
introduction into MAS and fault-management and is followed by
a review of existing approaches. Section 4 introduces an event-
stream framework that has been developed as a means for

 1

mailto:pex066@mail.usask.ca

providing basic fault-management functions. In section 5 a test-
bed MAS is presented and used to evaluated the current version of
the event-stream framework. The paper concludes with a
summary and an outlook on future work.

2. Introduction in Faults, Failures & MAS
This section gives an overview of the key concepts in fault-
management and MAS.

2.1 Faults & Failures
Before discussing fault management it is important to distinguish
the concepts of software failure and fault. A software failure is
the departure of the external results of program operation from
requirements. A fault is the defect in the program that, when
executed under particular conditions, causes a failure [3]. A multi-
agent system is a complex distributed system. All possible faults
in distributed systems may take place in multi-agent systems,
such as processor faults, network faults and software bugs. All
these faults can impact the performance of the system and lead to
a system failure [4]. From the application point of view, even the
most carefully crafted code has been estimated to include an
average of three bugs, mostly intermittent ones, per 1000 lines of
code [5] (individual numbers may vary depending on
programming language and skill level of programmers).

In the context of MAS it is useful to view faults and failures
predominantly from an agent perspective. Individual agents can
encounter partial or total failures as a result of internal or external
events. A partial failure will result in the degradation or loss of
some agent functionality while a total failure will result in the
complete loss of all agent functionality. Due to the cooperative
nature of agents a single agent failure can often result in a
phenomenon called fault propagation in which the single fault
(root cause) of one agent starts a chain-reaction of agent failures
with often-catastrophic results.

2.2 Fault-Management
Fault-management can typically be broken down into three basic
steps namely:

1) Fault Detection (FD)

Registering failures of individual system components e.g.
agents.

2) Fault Isolation (FI)

Identifying the cause/fault that lead to the detected failure -
in case of fault-propagation the determination of the root
cause.

3) Fault Clearance (FC)

Fixing the determined cause by launching recovery or
compensating action.

Ideally, fault-management will include all three steps starting with
the detection but most often only the fault-detection is
implemented due to the complexity in providing general fault-
isolation and fault-clearance procedures.

As mentioned above, fault-management is a complex process and
consists of two diagnosis steps (FD, FI) and one planning step
(FC). While FD can often be achieved by using rather simple
techniques e.g. correlation rules the FI requires the use of an

expert system. Consequently it is easier to achieve FD than FI,
which is therefore often left to a human expert. FC is a relative
simple planning problem that can be solved by standard planners
like GraphPlan [6].

2.3 Agent Platforms
As the area of MAS began to mature standards regarding the
agent environments and communication emerged. The
Foundation for Intelligent Physical Agents (FIPA) [7] is the
current standardization body regarding multi-agent systems. FIPA
tries to ensure MAS interoperability by defining standards for
architectures, communication languages, content languages and
interaction protocols.

As part of its specifications FIPA defines the agent runtime
environment (agent platform) in terms of its mandatory services.
According to FIPA every agent platform must offer the following
three mandatory components/services:

o Agent Management System (AMS)

The AMS (white pages) provides limited configuration
management functionality by storing the agent profiles of all
registered agents for that platform. An agent profile contains
the agent’s owner, state and id. Agents can use the AMS to
register, deregister, list known agents or change their profile.

o Directory Facilitator (DF)

The DF (yellow pages) is the second service of the agent
platform and like the AMS designed to provide basic
configuration functionality regarding the services offered by
the agents. Agents can use the DF to make their services
known to other agents on that platform by registering,
modifying or deregistering the service profiles. In addition to
manipulation their own service data they can also use the DF
as a means for locating agents that offer a particular service.

o Agent Communication Channel (ACC)

The ACC is a basic communication component used for
routing the messages (see FIPA for details).

Many FIPA compliant and publicly available agent platforms -
Agent Development Kit, April Agent Platform, Comtec Agent
Platform, FIPA-OS , Grasshopper, JACK ,JADE , JAS, LEAP and
ZEUS - have been developed. Despite the fact that all platforms
offer similar functionality only FIPA-OS and JADE managed to
establish themselves as widely used development platforms.
JADE and FIPA-OS are both java-based platforms and differ
mainly in their agent process mapping. While FIPA-OS enforces a
one agent per process model, JADE allows a N agent per process
model. As a result FIPA-OS offers a more secure design by
encapsulating agents in separate processes at the price of
increased resource-consumption. JADE however allows that
multiple agents share the same address space resulting in a
smaller footprint and faster inter-agent communication at the risk
of increased resource and address conflicts between agents.

FIPA does not address the issues of fault-management assuming
that this is best left to the MAS designers. But as a result of the
open design favored by FIPA it is fairly easy to add new services
by simply using an agent as a service wrapper and registering it
with the DF.

 2

3. Existing Fault-Management Approaches
Since fault-management is a key management function in any
complex system it has long been an area of intensive research.
Unfortunately the approaches for dealing with faults are often
highly domain specific. This paper therefore limits the discussion
of fault-management approaches to domains that are similar to
that of MAS. In addition the discussion will be limited to fault-
detection since it is the most basic step in fault-management.

3.1 Resource Monitoring in Grid
Grid computing [8] is one of the latest additions to the universe of
distributed computing approaches. Like P2P, the Grid aims at
offering uniform access to heterogeneous and highly autonomous
resource providing nodes. By allowing the users transparent
access to the idle resources of remote machines it becomes
possible to achieve higher resource utilization. To ensure that
users can access the remote resources it is paramount that the
resources and their usage is subject to continuous monitoring.
Grids and MAS are similar in the sense that both consist of highly
autonomous components (agents, locally managed computers)
and that failures of their components can easily lead to unwanted
fault-propagation. The grid monitoring architecture [9] is used as
a performance prediction service. It takes monitoring data (event
messages) as input into a prediction model, which is in turn used
by a scheduler to determine which resources are assigned to
which user/job.
The grid monitoring uses a simple event model consisting of
event sources (producers), event sinks (consumers) and a lookup
(directory) service.

Figure 1: Monitoring in the Grid

o Directory Service
The directory service is used as a basic look-up service that
enables the communication between consumer and
producers. Consumers can use the directory service to
discover producers of interest, and producers can use the
directory service to discover consumers of interest.

o Producer
The event producers emit performance data regarding a
resource in form of structured event messages. These event

messages are sent to subscribing event sources (consumers).
Performance data can be gathered from various sources such
as hardware and software sensors or specific sub-systems.

o Consumer
The Consumers are the event sinks that analyze the data. The
grid monitoring approach defines the following three basic
categories of consumers:

o Archiver: aggregate and store event data in long-
term storage for later retrieval or analysis.

o Real-time monitor: collect monitoring data in real
time for use by online analysis tools.

o Overview monitor: collect events from several
sources and use the combined information to make
a decision that could not be made on the basis of
data from only one producer.

One consumer can also collect event data from several
producers, use that data to generate a new derived event data
type, and make that available to other consumers. Such
consumers can be called intermediaries.

3.2 Fault Management in Telecommunication
Due to the importance of telecommunication networks significant
efforts are spent on ensuring that these systems have minimal
downtimes. As a result of their size, heterogeneity and dynamics
they tend to be difficult to manage which has lead to the
development of extensive management support infrastructure.

The widely accepted TMN standard [10] provides a uniform view
on the network components and enables the development of
generic management functions. The TMN model is based on the
concept of representing the various network entities (NE) e.g.
switches, routers, links in form of logical objects called managed
objects (MO). The MOs are wrapper objects that enable a uniform
view to the NE by offering standardized interfaces (e.g. Q, Q3).

The fault-management in a TMN network is based on event
messages. A MO can emit event messages in form of notifications
e.g. periodic reports or alarms e.g. error reports. Event messages
are sent from the MO to predefined event forwarding entities that
allow for a decentralized event processing. The event forwarding
entities send the pre-processed events in form of meta-event to an
operator.

In the management of a TMN network the pre-processing of event
messages is of great importance since operators have difficulties
handling large numbers of event messages. Obtaining the
knowledge on how to preprocess (e.g. correlate, filter) event
messages is by no means an easy task especially since the
telecommunication networks are subject to constant
reconfigurations and modifications.

Sterritt [11] presents a three-tier architecture for discovery and
learning of event processing rules.

o Tier 1 – Visualization of Event Messages

 3

2.The visualization correlation tier allows visualization of the
data in several forms. It provides data interpretation and
evaluation throughout the knowledge discovery process,
from data cleaning to data mining.

o Tier 2 - Managing the Correlation Rules

3.

The second tier supports the definition of correlation rules
that are discovered by experienced operators.

3.4 Eo Tier 3 – Discovering Correlation Rules
Klein [
(EH) m
It focu
“plugg
EH can
the ma
(system
interve

The third tier mines the TMN (Telecommunications
Management Network) messages to produce more complex
correlation rules.

This three-tier architecture enables both computer-aided human
discovery and human-aided computer discovery and shows how
an integrated solution consisting of such different components as
visualization tool, rule-tool and machine-learning tool can form a
very useful fault-management solution.

The Ex
pre-def
(except
resolut
represe
interac
resolve
state in
include
adding
canceli
time t
activiti
treatme
series
action

3.3 Agent Tracker
Tambe [12] introduced the non-intrusive concept of agent/team
tracking. By monitoring the agents’ actions and communication it
is possible to infer their goals, plans and intentions of the agents.

Agent tracking uses an approach based on model tracing, which
involves executing an agent’s run-able model, and matching the
model’s predictions with actual observations. The main difficulty
in agent tracking is that the tracker has to resolve ambiguities in
real-time. Tracking can also be used to monitor teams of agents
with the aim of identifying the team’s joint goals and intentions.

RESC (REal-time Situated Commitments) is an example of an
agent/team tracker. A tracker executes a model of the trackee (the
agent being tracked), matching the model’s predictions with
observations of the trackee’s action. Due to ambiguities in the
trackee’s actions, there are often multiple matching execution
paths through the model. Given real-time constraints and
resource-bounds, it is often difficult to execute all paths or wait so
a trackee may disambiguate its actions (delay analysis).
Therefore, RESC commits to one, heuristically selected,
execution path through the model, which provides a constraining
context for its continued interpretations. When tracking teams,
team models are used to track a team’s joint goals and intentions.

The ag
action
highly
experti
their “n

This E
for tota
(CNET
agents.
choose
(subcon
are sev
agent c
out sub
uses a
a candi

A team model consists of a team state and team operators. The
team state is used to represent the team’s joint state whereas the
operators are the agents in the team which are used to represent
the team’s commitment to a joint activity.

RESC tracks an agent team as follows:

1. Execute the team model in the tracker - commit to a
team operator hierarchy and apply it to a team state to
generate predictions of a team’s action. In doing so, if
alternative applicable operators are available
(ambiguity):

With t
service
not res
series oa. Prefer ones where the number of sub-teams

equals the number of roles.
o

b. If multiple operators are still applicable,
heuristically select one.

 4
 Check any tracking failures, specifically, match or role
failures; if none, go to step 1.

 If this fails, determine if there is a failure in tracking the
entire team or just one sub-team. In case of team failure,
repair the team operator hierarchy. If it is a sub-team’s
failure, remove the sub-team assignment to role in team
operator, repair the sub-team hierarchy. Go to step 1.

xception Handling
13] pioneered the now widely used Exception Handling
ethod, a domain-independent fault-management approach.
ses on providing an exception handling service that is
ed”, with little or no customization, into an existing MAS.
 be viewed as a coordination “physician” that knows about

ny different ways a MAS can get “sick” and actively looks
-wide) for symptoms and is capable of invoking selected

ntions strategies to “cure”.

ception Handling service communicates with agents using
ined languages for learning about the exceptions
ion query language) and for describing exception
ion actions (action language). The query language
nt the medium by which the exception handling service
ts with the problem solving agents to detect, diagnose and
 exceptions. While the query language is used to get agent
formation, the action language is used to modify it which
s changing the process model (re-ordering, deleting or
 new tasks; changing the resources allocated to a task;
ng tasks) and changing the work package content. At run-
he EH service actively request information about the
es from the agents to detect exceptions (ante failure
nt). If an exception is found the EH service will select a

of compensation actions and execute them by use of the
language.

ents have to implement the interfaces for the question and
language. The key to the success of EH in a MAS is that

reusable, domain-independent exception handling
se is separated from the knowledge used by agents to do
ormal” work.

xception Handling service has been used successfully [14]
l agent failures in MAS that use the Contract Net protocol
). CNET is a market-based protocol for allocating tasks to
 An agent (contractor) identifies a task that it cannot or
s not to do locally and attempts to find another agent
tractor) to perform the task. If a CNET agent dies there
eral immediate consequences: the customers of the dead
annot receive any results; if dead agent has subcontracted
tasks, the subtasks will become “orphaned”; if the system

matchmaker, it will continue to offer the now dead agent as
date, which will create confusion in the system.

he EH service, when an agent joins the MAS, the EH
 begins periodic polling of the agent. If an agent dies (does
pond to polling in a timely way), the EH service takes a
f coordinated actions to resolve the problem:

It notifies the matchmaker that this agent is dead and
should therefore be removed from the list of available
subcontractors.

o If the dead agent was performing tasks for some
customer(s), the EH service immediately asks these
customers to re-allocate the tasks assigned to the dead
agent.

o If the dead agent had allocated tasks to other agents, the
EH service tries to find new customers for these
orphaned tasks by acting in effect as a proxy.

o An agent reliability database is notified so it can keep
up to date information about the mean time between
failures for each agent type.

The EH service makes two assumptions about agents in order to
provide these capabilities. One is that it can transparently monitor
and if necessary, modify the domain-independent aspects
(message types as well as task and agent IDs) of all inter-agent
messages. To achieve this, sentinels are added to the system [15]
(Figure 2). Every agent (including the matchmaker if any) is
“wrapped” with a sentinel through which all in- and out-going
message traffic are routed.

Figure 2: Exception Handling

In addition EH requires that when agents enter a MAS they
indicate the kinds of exception handling behavior they can
support. This “EH signature” specifies for that agent how agent
death can be detected, how dead subcontractor problems are
resolved, how dead customer problems are resolved, and how
dead subcontractor problems are avoided.

3.5 Conversation pattern
Conversation patterns are the second most often used approach
for dealing with faults in MAS. Conversation patterns are defined
by a set of conversation actions and policies associates with them.
With the conversation patterns, agents can provide services to
other agents or even non-agent components in the network that
implement the same patterns. Conversation patterns can also be
used by management modules to enforce policies, such as
obligation and authorization, and measure response time to
obligation triggered events.

Whenever an agent offers a service that requires an interchange of
messages, the agent can “offer” one or more conversation patterns
to its agent client [16]. When the agents agree on using a certain
pattern, they can start the interaction by following the policies of
that pattern. The conversation pattern can be used as an
information source for fault-detection since patterns contain
information on correct communication acts between agents. The

agents’ activities can be monitored and checked without
constraining their basic autonomous behaviors.

Patterns can also be reused for other conversation scenarios with
some modification, which can cut down on the time spent for their
development. An example for adopting conversation patterns can
be found in the travel-agency demo [see section 5]. In this demo,
the client agents are obligated to initialize the action by providing
destination, date and other information to the service provider.
The service provider agent is authorized to query clients for
additional information or reply with the search result. The
obligation and authorization in this conversation can be enforced
by predefined patterns. Similar to the sentinel approach, observers
are created and used to monitor messages between agents.

3.6 Discussion
The above-mentioned approaches for fault-management showed a
variety of ways to deal with faults. In the following a discussion
of the approaches in regards to:

o Type of Fault-Management
o Required Knowledge
o Invasiveness
o Overhead
o Openness

The grid monitor [9] uses generic event messages as a means to
obtain the state of the resources. Resource providers have sensor
units assigned that emit performance data in form of event
messages that are sent to analyzers that detect the state.
Unfortunately the approach leaves it up to the developer of the
analyzer how to analyze the data, which is in indication that hard
coded a priori knowledge is being used. The approach is aimed at
offering basic fault-detection functionality, in an open non-
invasive way and ensures by decoupling the monitoring data flow
from the actual usage of the resource that the overhead is kept
minimal.
The work of Sterritt [11] for managing faults in TMN networks
can be seen as an extension of the approach used in the grid
monitor. TMN is based on a event message approach in which the
network elements (NE) are monitored by managed objects (MO)
that are responsible for emitting messages regarding the state and
performance of the NE. The MOs are therefore similar to the
event producers in [9]. The contribution of Sterritt is that he
structures the analysis of the messages by offering 3 components,
a visualization tool, a rule editor and a machine learning tool.
With the help of the visualizing tool the various event messages
can be analyzed using different views e.g. structured by
originator, time, sub-network. In addition it is possible to use the
rule-editor to define basic correlation rules to make sure that
simple situations can be detected automatically reliving the
operator from simple and repetitive tasks. To support the operator
in defining the rules a machine-learning component is added
which tries to identify non-trivial rules.
The RESC approach is an example of a completely non-invasive
approach that relies on eavesdropping and the use of behavioral
models. The “Achilles heal” of this intriguing approach is the
quality and complexity of the behavioral models. With increased
agent complexity more sophisticated models are required which
leads to the problem of how to obtain these models and how to

 5

struct StateEvent deal with the increased computing costs of using the models.
Consequently this approach can be regarded as not useful for real-
world MAS deployments.

{

 string Name; //name of the event
string AID; //agent id
string From; //from state
string To; //to state
string TID //transaction id
string Time; //timestamp

Exception Handling (EH) is the only fault-management approach
that supports fault detection, isolation and clearance. This is
achieved by introducing two additional languages (exception
language, action language) that have to be handled by the agents.
In addition EH deals with each agent separately - it lacks the
ability to provide a bird’s eye view of the system such as traffic
load of the system, relationships among agents. It is therefore
limited to dealing with single failures and is useless when dealing
with fault propagation. Nevertheless its straightforward approach
of deploying specialized sentinels is relatively easy to implement
which makes it still an attractive choice.

};

4.2 Events Manager (EM)
The events manage(s) is the central component in the events-
oriented approach. It doesn’t have to be an agent and can be
plugged as a service into the MAS. The EM can support the
following tasks:

The drawback of the conversation pattern approach is that it can
only manage the faults that result in a different behavior during
conversions. In addition total failures of agents that have not
engaged in a conversation are undetectable with this approach.
Like the EH service, conversation patterns are limited to
individual or a small group of agents; and cannot provide state
information regarding the whole MAS.

o Organize events by event types, sender, task or
transactions.

o Display events to human, such that allows events
viewer to query EM to get desired views.

o Analyze events for fault-detection e.g. matches events
sequence with events pattern.

Name Model Type Knowledge Invasiveness Overhead Openness

Grid Events
analysis

n/a n/a Median Low High

Tele-
com.

Rule
discovery

FD n/a Median Media High

Agent
tracker

Plan
recognition

FD Agent
model

Low Media Low

EH
service

Diagnose FD/FI/FC Agent
service

High High Low

Conv. Pattern
matching

FD Agent
service

Low Media Media

o Correlate events, such that new events can be generated
based on different management perspectives.

o Interpret the events to determine agent’s state.

An overview of such approach is shown in Figure 3. Agents
(colored circles) are distributed on different stations. Every agent
should implement a minimum interface for being able to send
events to the events manager. There can be multiple events
managers existing in the system. These events managers can be
equally capable of doing all the above tasks, thus each EM can be
put near to the agents; works can also be distributed among EMs
such that different EM can take different events and provide
different tasks. The system may also need to provide duplicated
EMs to store events so it can avoid single point failure.

Table 1: Evaluation
All of the above mentioned approaches seem to focus only on
some issues in the complex process of fault-management. This
paper will focus on an event-based approach that will allow the
combination of the above-mentioned approaches thus allowing for
an open, extendable yet non-intrusive approach.

4.3 Fault-Detection
Every agent reports their activities by sending various events to
the events manager. To accomplish any tasks, the agent will
follow specific steps while executing. Therefore, there are fixed
sequence of events associated with each task and agent. These
sequences can be predefined as events patterns. For example, the
events pattern for individual agent can be the state transaction
events sequences. The management module can match the
received the events from an agent with the state transaction
pattern which is predefined. It will be detected if the agent made
an illegal state transaction which is likely to result a fault. The
management module can also match the predefined task events
pattern with the events sent by multiple agents that cooperating on
a task. If a mismatch is detected the management module can
discovery which agent caused such mismatch (sent incorrect
events or no events), thus detect the faulty behaviour of the agent.

4. Event-Stream based Fault-Management
In this approach agents are required to report about changes
regarding themselves or their environment by emitting event
messages to an events manager (EM). By providing the EM with
correct and faulty event sequences (events pattern) it can classify
the incoming events and react accordingly. If the events of an
agent or agent-group follow the “standard” events pattern then
this agent/agent-group is performing correct. If a deviation from a
“standard” pattern is detected or a match with a failure pattern is
found diagnostic and compensating actions can be launched.

4.1 Events
Agent actions are reported as events to the events manager.
Possible events are “Creation”, “Migration”, “Deletion”, “State
Change”, “I/O”. Dependent on the agents, any other events are
possible [17]. Agents can also report another agent’s failure as
events. Each event has attributes like agent ID, timestamp, events
type, task, transaction ID and etc. An example of a state change
event is as follows using CORBA struct.

 6

Travel agency Airline

Agency clerk Airline clerk

Bank

Figure 4: Example MAS

5.2 Events Display
Figure 3: Event-Stream based Fault-Management The events-oriented approach provides four types of views for the

Travel Agency demo so that different management focuses can be
satisfied. To create this views, the events manage will group all
four types of events by different attributes e.g. events type,
sender, task and transaction.

4.4 Fault-Isolation and Fault-Clearance
Fault-detection enables the registration of a fault but fails to
provide information on the cause (fault isolation) or how to deal
with it (fault clearance). 5.2.1 Events View

In the events view, the events manager provides four GUI frames
to display four types of events separately. For example, all the IO
events are put together by its timestamps with all the information
(attributes) including sender, receiver, task, transaction id and
content (Figure 5).

The fault-isolation process will study the faulty behaviours
observed from the agent’s events. With case-based reasoning the
process can match the agent’s symptom to existing case.
Depending on the case the fault-clearance process will carry out
pre-stored treatment strategy onto the agent.

5. Agent DEMO
A Travel Agency demo has been developed as test-bed to apply
the event-oriented approach using the JADE development
platform. JADE was chosen due to the fact that it is inherently
more perceptible to fault-propagation as a result of the having
multiple agents share the same address.

5.1 Structure and Complexity
This demo consists of a large number of agents with complex
dependencies including client, agency, agency clerk, airline and
airline clerk agent. There are frequent interactions among these
agents such as services registration, task distribution, searching
for destination and comparing results (Figure 4).

Figure 5: Events View For making each reservation in the Travel Agency demo 39 ACL
messages are sent among the agents and 45 event messages are
sent from agents to EMs including creation, deletion, state change
and IO events. This demo is tested with up to 200 agents running
concurrently on Linux-clusters. Up to 15 processes are created
with each process containing 10-15 agents during the run time.
There are approximately 350 lines of codes per agent.

This events view helps user to focus on one type of event. For
example, keep track of the traffic load of the system by looking at
the IO events such as how many messages are sent in the system
in a certain time period or which agent is sending or receiving the
most amount of messages; keep track of the state changes of
agents by looking at the state change event such as the agent who
generated a lot of state changes tends to be busy (heavy loaded)
for this time period and agent that generated no state changes
tends to be free; it can also keep track how many agents are
created and deleted from the system by looking at creation and
deletion events.

 7

5.2.2 Agents View

In the agents view, the events manager provides a GUI to display
events by their sender rather than event type (Figure 6).
This agent view focuses on each agent’s activities. It collects all
the events generated by an agent and lists them by the generated
time. In this way, it acts as a record of an agent’s life. As each
agent works on its tasks, it will perform state transactions from
time to time. The correct state transactions for doing one task are
predefined as the agent is implemented. The state changes reveal
whether the agent is carrying its task correctly. For example, a
missing state change or an illegal state transaction can indicate
failures. The IO events of an agent reveal which agents are
closely related to each other. One agent must have frequent
interaction with some other agents if a large number of IO events
are generated among them. Thus this agent’s failure is likely to
affect those agents too. Because the agent will be unable to
response to other agents’ requests as it failed.

Figure 7: Task View

5.2.4 Transaction View

One drawback of the task view is that each task may be too
complex, which involves too many events (45 events in this case).
So it’s very difficult to match this number of events to the events
pattern. One solution is to view the complex task as the parent
task that includes many transactions. Each transaction
accomplishes one step of the parent task. If the parent task
includes a large group of agents’ interactions then each
transaction is typically the interaction between two or a small
group of agents. And each transaction can be further divided to
sub-transactions also.
Thus, when the agents report their activities via events they
indicate which transaction they are working in. The events
associated with the same transaction are grouped together for
analysis. However, the agents must be made transaction aware. A
transaction ID is introduced to accomplish this: the initiating
agent in each transaction creates the transaction ID, it passes the
transaction ID in ACL messages when it interacts with other
agents; the subsequent agents in the transaction merely adopt the
ID from the sender agent and include it in the events message.
The agents will pass the transaction ID till the end of the
transaction, then a new transaction ID will be generated by the
first agent in the next transaction. Each transaction ID includes
four parts: name of the agent which initiates the parent task, the
number of times the task is executed, name of the current
transaction, name of the agent who initiates this transaction.

Figure 6: Agent View

5.2.3 Task View
In the task view, the events manager provides a GUI to display
the IO events by the task the events associated with (Figure 7).
Each task is defined as a reservation in the current system.

Since agents are task-driven so it makes sense to provide a view
of all the tasks in the system. All the subsequence events of task
are listed below by their timestamps. As mentioned in early part
of the paper, events patterns for correctly carrying out a task or
incorrectly carrying out a task are defined in advance. Therefore,
the events of a task can reveal whether the task is carried out
correctly or not. If the events match the events pattern for
correctly carrying out a task then the agents are doing well;
otherwise, if it falls into any incorrect pattern, the management
module can discover this, thus prevent the failure form happening
and also know which agent is making mistake. The tasks view
also provides other meaningful information of the system. By
showing the tasks, it can be revealed which task is most
frequently executed and which agents are involved in this task,
i.e. Beijing might be a place that many people want to go to.

A transaction view is showed next (Figure 8) where AgencyDis
and ClerkReg are both the name of the transactions and Client1,
Client2 are the name of the agent that initiated two parent tasks
correspondingly. In this case, each ClerkReg transaction includes
three events, which are from Agency-Clerk1 and Airline1. The
transaction view provides a step-by-step monitoring of the agents’
execution. It releases the burden of the management component in
examining large amount of events and provides the ability to
focus on each step separately. With the transaction view, the
viewer can clearly visualize the execution of the tasks in MAS
step-by-step, and decide at which step the execution failed. In
case of large scale system the viewer can always chooses what
kind of tasks to monitor, e.g. choose by the name of the task or
the agent that performing the task.

 8

o Manually kill one or more agents (hard failure).

o Inject faulty behavior to causes unexpected death
(generate deletion event before death).

o Inject faulty behavior to cause delay in responding
request.

o Inject faulty behavior to cause incorrect response to
requests.

The students could immediately realize the failure of the system
given an incomplete transaction view. It took up to 2 minutes for
the students to locate the first hard failure. The other hard failures
took much less time due to experience. Unexpected deaths of
agents (soft failure) could be located in 30 seconds providing the
deletion events that presented in the agent view. The agent delay
in responding request could take any length of time to discovery
depending on the knowledge of the students possess about the
system. Because there is no timing mechanism presenting in the
system so responding delay could be considered as agent death
unless the transaction view or agent view are refreshed. Incorrect
responses to requests could be discovered in 30 seconds to 1
minute by matching the received events with the standard events
pattern.

Figure 8: Transaction View

5.3 Fault generator
There are two kinds of failures considered in the multi-agent
system with respect to their causes:

o Hard failures. Software or hardware crashes that cause
suddenly disappear of agent or agent container or the
whole platform. 7. Conclusion

The complexity and all other features of multi-agent system
determined the importance of a fault management infrastructure
for MAS. An event-oriented approach provides a domain-
independent solution for fault management in MAS. It only
requires each agent to report its activities in events but not affect
any designed behaviors of the agents. The low invasiveness of
this approach makes it easy to be applied to any MAS. Because
the functionality of events managers can be distributed to multiple
ones so this approach can also support large-scale system and
allow easy access to any other applications.

o Soft failures. Caused by the faulty behaviors of the
agent such as slow down execution, incorrect response
to request or unexpected death.

To exam the performance of the events-oriented approach it is
necessary to simulate some failure scenarios in the system. Hard
failures tend to be easy to generate: i.e. deactivate agents. But it
needs some effort to generate soft failures. To accomplish this, a
fault generator is implemented. It is an agent that possesses
several faulty behaviors. It can send the faulty behaviors to other
agents and other agent will start to execute these behaviors.
Depends on the nature of the behaviors the system will run into
different failures. The fault generator provides three common
faulty behaviors in MAS:

8. Summery
This paper presents the motivation for fault management in multi-
agent system and briefly discusses the concepts of agent, FIPA
and JADE. It provides a literature view of related works in grid
system, telecommunication system, agent tracker, exception
handling service and conversation pattern. An event-oriented
approached is introduced and tested that utilizes the advantages of
the other works. In the event-oriented approach, the agents are
required to report their activities by sending events to events
manager(s). The events are organized, analyzed and interpreted at
the events manager(s). Other application or human can query the
events manager to get different events views or state information
about the MAS. Several events views are discussed in the paper.
A fault generator is created for injecting faulty behaviors to the
system and tests how event-approach can help human to do fault
management. This is examined by an experiment with several
graduate students.

o Unexpected death of agent.
o Unreasonable delay in answering requests.
o Incorrect responses to requests or any other unexpected

behaviors

6. Results
To evaluate the visualization layer of the event-stream approach
several experiments were conducted with the following questions:
1. How quickly the operator realizes the failure with the event-

oriented approach.
2. How quickly the operator locates the agent that causes the

failure.
3. Whether the operator can figure out what causes that agent

to fail. 9. Future Work
The current work provides the ability to discovery the failures
caused by the faulty behavior of an agent. But what faulty
behavior the agent is executing is unclear. Therefore, no
resolution can be launched to solve the problem.

Two graduate students in computer science with experience in
MAS and JADE participated in this experiment. After an initial
learning phase in which the MAS and the faults were explained
they were asked to manage the system. While they were
managing the system the fault generator was used to: The future work will focus on fault-isolation, which is to find the

cause of agent’s unexpected behavior. Case-based reasoning will

 9

[11] Roy Sterritt, “Discovering Rules for Fault Management”.
Proceedings of Eighth Annual IEEE International
Conference and Workshop on the Engineering of Computer
Based Systems (ECBS ‘01)

be adopted in this process. After the fault-isolation process the
work will focus on fault-clearance which will develop various
treatment plans for resolving agent’s fault.

[12] Milind Tambe, “Tracking Dynamic Team Activity”, 1996.
National Conference on Artificial Intelligence(AAAI96) 10. REFERENCES

[1] International Organization for Standardization.
http://www.iso.ch/iso/en/ISOOnline.frontpage, 2003

[13] Mark Klein and Chrysanthos Dellarocas. “Exception
Handling in Agent Systems”. Proceedings of the Third
International Conference on Autonomous Agents, Seattle,
WA, May 1-5, 1999.

[2] I-Help. http://www.cs.usask.ca/i-help, 2003

[3] John D. Musa, Anthony Iannino and Kazuhira Okumoto.
“Software Reliability: Measurement, Prediction,
Application”. ISBN 0-07-044093-X

[14] Mark Klein, Juan Antonio Rodriguez-Aguilar and
Chrysanthos Dellarocas. “Domain-Independent Exception
Handling Services to Enable Robust Open Multi-Agent
Systems: The case of Agent Death”. Appears in the Journal
of Autonomous Agents and Multi-Agent Systems, 2001

[4] Alan Fedeoruk. “Agent Replication in Multi-agent
System”.2002

[5] J, Gray and A. Reuter “Transaction Processing: Concepts
and Techniques” San Mateo, Calif. USA: Morgan Kaufmann
Publisher, 1993

[15] S. H?gg, "A Sentinel Approach to Fault Handling in Multi-
Agent Systems,"presented at Proceedings of the Second
Australian Workshop on Distributed AI, in conjunction with
Fourth Pacific Rim International Conference on Artificial
Intelligence (PRICAI'96), Cairns, Australia, 1996

[6] Graphplan Home Page.
http://www2.cs.cmu.edu/~avrim/graphplan.html, 2003

[16] Christos Stergiou and Geert Arys, “Policy Based Agent
Management using Conversation Patterns”. AGENTS’01,
May 28-June 1, 2001, Montr?al, Qu?bec, Canada.

[7] Foundation for Intelligent Physical Agents. FIPA agent
management specification. http://www.fipa.org, 2000.

[8] Global Grid Forum. http://www.gridforum.org/, 2003
[17] Sebastian Abeck, Andreas Koppel, Jochen Seitz. “A

Management Architecture for Multi-Agent Systems”. 1998
IEEE

[9] Ruth Aydt, Warren Smith, Martin Swany, Valerie Taylor,
Brian Tierney, Rich Wolski. “A Grid Monitoring
Architecture”. July, 2001

[10] Telecommunication Management Network.
http://www.tmn.pt/, 2003

 10

http://www.iso.ch/iso/en/ISOOnline.frontpage
http://www.cs.usask.ca/i-help
http://www2.cs.cmu.edu/~avrim/graphplan.html
http://www.fipa.org/
http://www.gridforum.org/
http://www.tmn.pt/

	Motivation
	Introduction in Faults, Failures & MAS
	Faults & Failures
	Fault-Management
	Agent Platforms

	Existing Fault-Management Approaches
	Resource Monitoring in Grid
	Fault Management in Telecommunication
	Agent Tracker
	Exception Handling
	Conversation pattern
	Discussion

	Table 1: Evaluation
	Event-Stream based Fault-Management
	Events
	Events Manager (EM)
	Fault-Detection
	Fault-Isolation and Fault-Clearance

	Agent DEMO
	Structure and Complexity
	Events Display
	Events View
	Agents View
	Task View
	Transaction View

	Fault generator

	Results
	Conclusion
	Summery
	Future Work
	REFERENCES

