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ABSTRACT

Peer-to-Peer (P2P) systems are emerging as a “new” form of
distributed computing with a strong emphasis on self-
organization, decentralization and autonomy of the
participating  nodes.  Self-organization, autonomy and
decentralization allow for highly adaptive, robust and scalable
networks making P2P an increasingly interesting way to
design distributed systems. Unfortunately it is still very
difficult to develop P2P applications due to the complex and
ill understanding of interdependencies between the users,
application, protocol and physical network. Furthermore, the
P2P topology and the underlying network topology can
greatly influence the behavior of the P2P system.

This paper provides an overview of P2P protocols and a review
of existing simulators. Based on the shortcomings of existing
simulators a novel layered simulator for P2P networks is
introduced and evaluated.
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1. INTRODUCTION

In the middle of the 90’s, the computational resources of
ordinary desktop computers began to exceed the needs of their
users, creating an ever-growing growing pool of unused
computational resources. An Intel study [7] estimates that in
the average organization the combined computational
resources of the desktop machines are 2.5 times larger than
those of their centralized servers and high-end compute nodes.
The now famous SETI@Home [23] project demonstrates that
by using simple P2P techniques it is possible to harvest the
scattered resources of thousands of desktop computers in an
efficient way enabling the analysis of large data at virtually
now costs. The success of the SETI@Home project, which
forms one of the most powerful compute-networks today, has
resulted in an increasing interest in the study and deployment
of P2P networks.

The field of P2P networks is still in its infancy with new
applications and protocols emerging on a nearly daily basis.
However, due to the difficulties in evaluating them prior to

their large-scale deployments, they are often short-lived —
disappearing as fast as they emerge — normally due to bad
performances. As the list of failed P2P systems and protocols
grows the need for evaluation tools (e.g. performance
evaluation) increases.

Testing a system performance prior to its deployment is a
fairly common element in the software development of
applications. According to Pawlikowski [17], there are two
main possible experimentation streams: experimentation with
the actual system and experimentation with a model of the
system (see Figure 1).

P2P networks tend to be large, heterogeneous systems with
complex interactions between the physical machines,
underlying network, application and user. Hence, testing of a
“running” P2P network or protocol in a realistic environment
is often not feasible. However, it is possible to use a
simulation of such networks to evaluate the applications and
protocols in controlled environment.
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Figure 1: Studying System Performance

As a result of the excessive bandwidth consumption of
Gnutella v0.4 [4], a new generation of protocols and systems,
that emphasizes self-organizing due to “learning” from past
experiences, emerges. These protocols are tightly coupled to
the network topology, application and the users behavior. As
the result, a P2P simulation, which maps to the real world,
needs to reflect tight dependencies between the users,
application, protocol and physical network. The aim of this



paper is to motivate the need for generic P2P network
simulators. It is structured as follows: in section 2 the major
P2P protocols are presented. This is followed by an overview
and evaluation of the P2P simulators currently used. Based on
the shortcomings of existing simulators a new approach for
simulating P2P systems is presented in section 4. The paper
concludes with a summary and a presentation of future work.

2. Peer-to-Peer Protocols

Over time, a variety of P2P protocols and systems have
emerged. This paper therefore focuses only on the most
prominent examples of certain types of P2P protocols.
Resource allocation is one central element in every P2P
protocol. Existing approaches can be grouped [13] into one of
the following three basic categories:

2.1 Centralized directory model.

This model is based on the availability of a server used as a
centralized directory service, managing the information of all
the participating peers in the P2P network. In order to join and
participate in the network, a peer must directly connect to the
central server. While the peers mainly in full control of their
locally owned resources, they need the server for advertising
their resources or locating needed resources of other peers.

This centralized approach solution provides good resource
allocation performance and network manageability. However,
using a centralized component introduces a central point of
failure.

2.1.1 Napster [14]

Napster was a centralized P2P file-sharing network that was
forced to shut down as a result of copyright infringements. In
Napster, a cluster of central servers maintained the information
of the content offered by the peers of the network. All the peers
in the Napster network had to connect to the server, which also
handled their resource request queries. Upon receiving the
results of the match from the central server, the peer,
establishes a connection to the resource-providing peer and
started to consume the resource e.g. downloads the file
directly.

2.1.2 SETI@Home

SETI@Home was designed to aid the process of discovering
extraterrestrials by harvesting the unused processing power of
idle desktops via the Internet. A centralized server stores and
packages the signal data of radio telescopes into small chunks
that can be processed by an average desktop machine. Users
willing to participate in this “hunt for ET” have to download
and install the signal processing data provided by
SETI@Home. Depending on the OS, users download a
SETI@Home screen-saver that is used as a means of detecting
idle-cycles or software designed to run as a background
process. When the SETI@Home software recognizes that the
host has idle resources (based on the settings of the user), it
contacts the central server of SETI@Home to download a
chunk of data (ca. 200 KB). Upon the successful download, the
peer starts a series of signal processing activities and sends
the results (ca. 80 KB) back to the server requesting new data
and restarting the compute cycle.

Despite the impressive performance of the SETI@Home
network, it is important to point out that it can only handle
single process multiple data (SPMD) compute problems due to

the inability of SETI@Home peers to communicate and
therefore coordinate their processing of data.

2.2 Flooded request model
The flooded request model is a “pure” P2P model since it does
not require any centralized infrastructure. Due to the absence
of any predefined structures, resource requests of a peer are
handled by use of message flooding.

Gnutella [4] is a good example for the flooded request
protocols. Gnutella has been designed for information storage
and searching in distributed system with decentralized
control. Currently two main Gnutella protocols exist: 0.4 and
0.6.

2.2.1.1 Overview of Gnutella v0.4

A Gnutella 0.4 peer (X) connects to the network by
establishing a TCP/IP connection to a peer (Y) that is currently
on the network. After connecting, X sends a request string
(“GNUTELLA CONNECT/0.4\n\n") to establish a link to peer Y.
Peer Y can accept the connection, by sending “GNUTELLA
OK\n\n”, or refuse the connection, by sending any responses
other than the accept connection string. Once the peer X is
connected to the network, it can communicate with other peers
by sending and receiving Gnutella messages (also called
descriptors).

Every descriptor has 22 bytes of message headers consisting
of: descriptor ID (byte 0 to 15), payload descriptor (byte 16),
TTL (byte 17), Hops (byte 18), and payload length (byte 19 to
22). The descriptor ID is a unique identifier of the message in
the network and typically created by using a random generator.
The Time-To-Live (TTL) is the number of times the message
will be forwarded by Gnutella peers before being deleted. Hops
represent the number of times the message has been forwarded
by peers. Each time a message is being forwarded, the
message’s TTL is being decremented by one and the hop is
increased by one. The Payload descriptor contains the code for
the type of the message: 0x00 for Ping message, 0x01 for Pong
message, 0x40 for Push message, 0x80 for Query message, and
0x81 for a Query Hit message. The payload length contains
the length of the remainder message (payload) following after
the header. Hence, a message’s total length is 22 bytes + the
payload_length; the next message is located exactly
payload_length after the current header.

A peer can discover the information (IP address and port
number, number of resources, etc.) about other peers by
sending a ping message. A ping message has payload length
of zero - no payload. Upon receiving a Ping message, a peer,
will forward the ping messages to all the directly connected
peers, except the peer who sent the ping message. At the same
time, the peer will send a pong message, which has the same
descriptor ID as the corresponding ping message, in response
to the peer who sent the ping message. A pong message has a
payload that contains the number of files shared, the number
of kilobytes shared, IP address, and port number of the
responding peer.

While ping and pong messages are used for discovering other
peers in the network, query and hit messages are used for
locating resources. To locate a resource, a peer sends a query
message that has a payload containing the required minimum
network speed of a potential resource providing peers and a
search string for describing the requested resource. Similar to
the ping messages, a query received by a peer is broadcasted to
all the directly connected peers (except the sender of the



request). Similar to the ping/pong messages query messages
are also subject to hop increase and TTL decrease as a means of
limiting the range of the query message. Each message will be
replicated and propagated throughout the networks until it
either comes to a peer that matches the search criteria or
exceeds its TTL value. Peers that are capable of offering the
requested resource respond with a query hit message. A
query_hit message contains as payload information about the
resource-providing peer.
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Figure 2: The flat Gnutella 0.4 Network

Hence, a resource contained in the network is not searchable if
the minimum distance (hops) between the peers is greater than
the lifetime of the request. However, a resource located within
the lifetime of the request might not be reachable as the result
of “short-circuiting” effect due to the latency of the network
[11]. “Short-circuiting” effect occurs when there is a the
request with smaller lifetime arrived a node through the
smaller latency path, then when the same request with higher
lifetime arrived through the higher latency path, this request is
discarded. (see Figure 2)
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Pong messages, and query_hit, messages are routed along the
same path back to the peer that launched the original ping and
query messages. This is made possible by keeping a record of a
predefined number of message descriptor Ids, and the
corresponding payload descriptors. When a peer received a
response message (pong or query hit), it will check if it
generated the original message (ping or query). If the peer is
not the destined receiver, it will check if it has seen such a
ping, or query, that has the descriptor id. If no such a ping, or
query, passed through the peer, the message will be dropped;
else it will send the response message to the connection that
sent the corresponding ping, or query message. Once a peer
received the Query Hit message, generated by another peer, in
response to its query message, it will access the resource using
the http protocol.

2.2.1.2 Gnutella v0.6 [12]

Similar to Gnutella v0.4, a peer connects to the network by
first establishing a link to another already connected peer
through TCP/IP. The peer wishing to join sends the request to
connect string “GNUTELLA CONNECT/0.6<cr><If>” and
optional data to describe itself thus making a connection more
likely.

GNUTELLA CONNECT/0.6<cr><1f>
User-Agemt:BearShare<cr><1f>
X-Ultrapeer:True<cr><1f>
Listen-IP:12.134.4.23:6349<cr><1f>
<cr><l1f>

Figure 3: Connection Request in 0.6.

The sending of additional data allows for the introduction of
UltraPeers [24] (super nodes) in the peer network. The concept
of UltraPeers is not part of the v0.6 specification; it is an
optional implementation that helps reduce the network
bandwidth consumption resulting from the flood of ping and
query messages. However, since the concept of UltraPeers is a
way to reduce the network consumption, almost all the
Gnutella v0.6 peers are implemented to support the UltraPeer
functionality. In addition the departure of a peer can be
announced by itself using the bye message thus minimizing
the problem of dead links.

In a Gnutella 0.6 network, there are two kinds of peers:
UltraPeers and leaf nodes. Leaf nodes are the nodes that are not
powerful enough to be an UlraPeer or fail to provide the
UltraPeer functionality. Leaf nodes only maintain connections
to UltraPeers and/or to the other leaf node that wants to joint
the network but can’t find a suitable UltraPeer. An UltraPeer is
a Gnutella peer that maintains many connections to other
UltraPeers and a large set of leaf nodes. The UltraPeer
maintains a record of the leaf node’s resources and acts as a
shield for its leaf nodes to the flood of ping and query
messages.

Figure 4: Hierarchies in Gnutella 0.6

2.2.2 NeuroGrid [8]

NeuroGrid was initially designed as an alternative routing
model for Gnutella. It focuses on minimizing the sending of
messages by increasing the query processing cost for peers. It
is designed to “provide a method of communication that will
piggy-back on top of http”[9].

In NeuroGrid, the resources in the P2P network are assumed to
be associated with a set of keywords. When searching for a
resource, the requesting peer needs to know the keywords that
are associated with the resource. Unlike in Gnutella, the
searches are not being forwarded to all the connections
automatically; NeuroGrid expects the peer to decide how to
route the request. A NeuroGrid node uses a model for
neighboring peers and their contents. Using a decentralized



routing model allows a more efficient routing at the expense of
added processing overhead.

2.3 Document routing model

Document routing is the most recent model for resource
allocation in P2P networks. In this model, the system has no
central point of control. It assigns PID (Peer ID) to each peer
and random keys to each resource. The files are routed to other
peers using algorithms that decide the location of the resource
in the network according to the key of the resource and the PID
of the nodes in the network. Consequently, the request for the
resource can be routed to the destination peer without
replication and broadcast. This model obtains significantly
better performance at the price of reduced autonomy of the
peers in regards to how resources and data about resources are
handled.

2.3.1 FreeNet

FreeNet [5] is a P2P file-sharing system that provides features
such as information anonymity and high security and
encryption. Each FreeNet peer resides on a node that
contributes storage spaces to the FreeNet network. The unique
key of the file is generated using SHA-1 [15] secure hashes.
There are several kinds of hash keys used within FreeNet; the
main two kinds of keys used are content-hash keys (CHK) and
signed-subspace keys (SSK) [3]. The content of the file to be
stored is hashed to generate the CHK, ensuring the uniqueness
of the keys as it is considered “nearly impossible”[3] for two
different files to be hashed to the same key due to the large
space a key can be picked from. Each SSK is associated with a
pair consisting of a public and private key. By using SSK,
there is the flexibility of letting anyone, who has the public
key, read the file but only those who have the private key can
perform write operations on it.

Upon joining the network, a new node first generates a public-
private key pair for itself. The peer advertises its present by
connecting to a remote peer that is already in the network and
sending an announcement message that contains the public
key, the physical address, and the TTL of the message. Once the
peer received the announcement message, it randomly chooses
a connection to forward the announcement message. The
announce message is propagated throughout the network until
the maximum TTL is reached. Then the peers that know of this
new peer assign a unique random PID (also called GUID) to the
new node and update their routing table.

A FreeNet peer stores knowledge about the PIDs of the nearby
peers and the keys of the files contained. As each file is
assigned with a unique key, upon insertion of the file into the
network, the file is rerouted to a neighboring peer with a PID
closest to the key of the file and is replicated for storage before
it is rerouted again. The process of rerouting and replication is
repeated until a user-defined number of copies have been
stored in the network. Similarly, user can retrieve the file using
the key of the file. When the file is being routed back for
retrieval, it is being replicated and stored in the nodes along
the path. Hence a frequently retrieved file tends to have a larger
number of replicated files in the network and the search can be
done faster. Whereas a less frequently retrieved file need a
longer time for retrieval and might even be replaced by the
more frequently retrieved files due to the limited storage
space.

2.3.2 Pastry

Pastry [20] is a set of tools for building a P2P file-sharing
system. Similar to other document routing models, each node
in the Pastry network has a PID (or nodelD) and each resource
in the network has a unique key. A resource is stored on a user-
predefined number of nodes with PIDs that are the closest to
the 128 most significant bits of the key. Each Pastry node
keeps a routing table, a neighborhood set, and a leaf set. The
routing table contains [/og:» N rows with 2° — 1 entries. Each
entry in row i contains the IP address of the other node, that
matches the node’s own IP address in the first 7 positions. The
leaf set is the set of the closest PID, such that half of the PID is
larger than the node’s PID, and the other the half of the PID is
smaller. The neighborhood set contains the PIDs and IP
addresses of nodes that are closest to the local node. A Pastry
node first forwards the message - that contains the key of the
targeted object - to those node with PIDs, at least one digit
longer than the matching number of prefixes between the key
and the current node’s PID, closest to the key. If this attempt
failed, the message is routed to the node with a PID that shares
the same number of matching prefixes with the current PID and
is numerically closest to the key than the current node’s ID.
Using the information stored and the 2 steps described above,
a Pastry node can route a message with the minimum
distance/hops needed. To ensure the information of the tables
are updated even after the network-changing events, such as
the node arrival and departure, the routing tables are
exchanged among the affected nodes.

2.4 Summary

The Centralized directory model is straightforward but lacks
the robustness of the other models since it introduces a single
point of failure. The flooded request model and document
routing model depend largely on the network topology and
the user task scheduling. User behavior such as, switching
on/off the application, querying, and choosing the connection
to forward the message in the case of NeuroGrid, can greatly
impact the P2P network topology and consequently the
efficiency and scalability of the system.

To be able to study the complex interactions of user behavior,
applications, P2P protocols, physical network and machines, it
is necessary to use simulators.

3. P2P Network Simulators

As mentioned earlier P2P network simulators are needed for
analyzing the behavior of complex P2P systems. To date only
a few P2P simulators have been implemented to aid the
research on P2P-application and P2P-protocols development.

3.1 Evaluation Criteria

There are two necessary conditions for obtaining credible
results from a simulator: using a valid simulation program,
and executing a valid simulation experiment. “A simulation
program is valid, if it is a verified computer program of a valid
simulation model”[17]. A verified simulation program is a
program that performs as intended. And a validated simulation
model is a model that has satisfying accurate approximation of
the system under study.

Consequently it is important that P2P simulators are flexible
and adaptive enough for expressing the models to be used in
the simulation. Table 1 contains the criteria considered
important in evaluating a P2P simulator.



Criteria Definitions

Usability How easy is the learning for operating,
preparing inputs for, and obtaining
outputs of the simulator?

Extensibility How easy can the simulator be extended to
simulate modified functionality of the
protocol?

Configurability | How much configuration power is given to

Easi the user? (And how easy is the

(Easiness) configuration change?)

Interoperability | Can the simulator be used to interoperate
with other application?

Level of Detail How much details of the application are
implemented in the simulation?

Build-ability How easy can the application code
simulated be transformed into real
application?

Table 1: Criteria

3.2 Serapis

Serapis [21][22] is a java-based simulator that is designed for
evaluating different caching algorithms for FreeNet. Serapis
has been extended to simulate the Gnutella protocol, however,
the work is halted and the extension is not yet completed (the
latest update was made in November 2001). Serapis focused on
the “static network designs with different connectivity
patterns and routing algorithms” [8]. It has been shown that
the results of simulations on FreeNet obtained using Serapis
were inaccurate and that the simulator fails simulate the actual
stresses and strains of a live deployment in an accurate manner

[518].

3.3 NeuroGrid Simulator

NeuroGrid Simulator 0.1.0 [16] is a java-based P2P simulator
that has been extended to support searching simulation for
FreeNet, Gnutella and NeuroGrid protocols. The simulation is a
single-threaded discrete event simulator. It has properties files
that enable the user to modify the parameters for a simulation
run. The user can specify the type of protocol to simulate, the
number of searches to simulate and the type of preferred user
interface (e.g. applet-based GUI). The applet displays the
search messages being sent to the searching nodes at each step
(see Figure 7) but tends to be useless for longer simulation
runs or more complex networks.

The statistics (e.g. number of messages parsed and the states of
the simulation) can be saved into files for later analysis. The
NeuroGrid Simulator 0.1.0 assumes that the distance between
the nodes are constant - messages with the same TTL are sent
through the network in parallel. After a search message is sent
out to other predefined nodes, the nodes that received the
messages take turns in forwarding the messages, due to the
single-threaded design of the simulator. Furthermore, it is
until a search event has terminated that another new search
event will be active (sequential execution of search events).
NeuroGrid is still very much a work in progress an efforts are
made to improve the level of detail in the network models [10].
NeuroGrid enables the user to specify the number of nodes to
simulate (this is also the number of nodes to add to the current

simulation after a number of searches is done), the initial
number of connections for each node, the number of searches
to be generated, and the initial network topology (only ring or
at random networks).
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Figure 7: NeuroGrid Simulator

Since it is designed to simulate the searching algorithms of
three different protocols, it is necessary to let the user specify
the number of keywords used for the simulation, the number of
the documents used for the simulation, the number of
keywords per document, and the number of documents stored
on each node (document and keyword assignments are all
randomized). The latest release of NeuroGrid Simulator version
0.1.4 on December 16, 2003 has included the simulation of
resource-limited nodes and the dishonest nodes. By extending
the classes provided, the simulator can simulate the user-
defined application on the three protocols. However, it is not
widely adopted in P2P application design and development.

3.4 FreeNet Simulator

The java-based FreeNet simulator [18] supports the analysis of
the FreeNet protocol, in regards to evaluating different caching
algorithms. It uses a two-steps mechanism to support the event
handling allowing multiple messages to be sent at a time. In
the first step, the simulator will move the messages from a
temporary storage space to a queue for of the node that will
process them in the next iteration. In the second step, the
simulator will process the messages queued at each node in the
previous iteration and put the newly generated messages in the
temporary storage space. With this design, all the nodes act
synchronously without mixing the newly arrived messages
and the old messages. The user can modify the factors for the
simulation by manipulating an interface class that is
implemented by the other classes. The only problem is that the
source code has to be recompiled each time after the parameters
of the simulation have been changed. The user can change the
maximum number of nodes to simulate, the TTL of the
messages, the type of nodes to be simulated (the caching
algorithm), the probability of initializing the event of request
for file at each node, and the probability of faulty information
insertion by the node, etc.

The handshaking between nodes is not implemented in this
simulator. In order to initialize a stable network, the simulator
is started with three connected nodes (in a line, not a triangle).



Every five iterations a new node joins the network until the
maximum number of nodes to simulate is reached. After the
network is initialized with the number of nodes desired, the
desired number of files will be inserted into the network. After
this the simulator will be started with initiating the request
events. The simulator then shows on the command prompt the
statistics such as number of attempted and successful actions
for file-insertions and searches. This single-threaded simulator
also assumed that once the node have connected to the
network, it always stay in the network.

3.5 FreePastry

FreePastry [6] is an open-source implementation of the Pastry
protocol in Java. The latest release of FreePastry (released on
January 28, 2003) includes the implementation of the PAST
[19] archival storage system based on Pastry and an
implementation of the Scribe [2] group communication
infrastructure. It is an application of Pastry peer, but it can also
emulate a Pastry network. It provides 3 choices of transport
protocols for the user application: direct, RMI, and Wire. With
direct transport protocol, FreePastry emulates a network with a
user-defined number of Pastry nodes in a single Java Virtual
Machine without modeling the physical network. In this
situation, the main thread will setup the network and initiate
the search events, as it is single threaded, the searches are done
in serial as in NeuroGrid Simulator. Using RMI as a means for
IPC (inter process communication),

The settings of the simulator parameters, such as the number of
nodes to simulate and the number of events to generate, is
done by providing the values in the command line upon
starting the local simulators. The results are displayed on the
command prompt screen as the messages are being processed.
Since the Pastry routing uses proximity metrics, it is necessity
to represent the proximity in the simulation. Random,
Euclidian and sphere are currently available. In the Euclidean
Network topology, the nodes are randomly placed in an
Euclidean plane and the proximity is based on the Euclidean
distance in the plane. Whereas, in the Sphere Network
topology, the nodes are randomly placed on a sphere, and the
proximity is based on the Euclidean distance on the sphere.
However, the network delay for the message passing is not
simulated, as the simulator is not designed to simulate time.

3.6 Summary

Current P2P Simulators do not support the customization of
the initial network state (connections between the simulated
computers and the network delay) and are limited in the level
of detail and the scalability of the supported models.
Furthermore, the simulators are mostly focusing on the
caching algorithms and ignoring the fact that other activities
can also impact the efficiency of the system. The NeuroGrid
simulator is providing a very good network visualization
using the applet, however, it does not, currently, simulate the
user events, network latency and the processor delay of the
nodes. Hence the simulation is not close enough to the real
world  situation, especially with the serial searches
functionality. FreePastry and NeuroGrid executes search
events only in a serial fashion and don’t support the modeling
of network latency and heterogeneous hardware. Due to the
absence of a GUI in FreePastry the modification of parameters
is cumbersome. Some of the settings are made through the
command line and some have to be encoded in the program.

The FreeNet simulator supports synchronous actions of nodes
but fails in providing support for modeling the network
latency and the user’s behavior. In addition the concept of
recompilation after changing is rather crude and limits the use
significantly.

NeuroGrid | FreeNet FreePastry
Event-processing Serial Parallel Serial
Usability Very easy | Medium Hard
Extensibility Medium High Medium
Configurability Mid-High | Medium Low
(Easiness) (High) (Medium) (Mid-Low)
Interoperability Medium Medium High
Level of Detail Medium High High
Build-ability Medium High Very High
Simulating User | No No No
behavior
Simulating Computer | No No No
Hardware
Simulating network | No No Yes
overlay
Simulating time No Yes No
(Network delay) (No) (No) (No)

Table 2: Evaluating existing P2P Simulators

Adapting the simulator to new or modified protocols is a
question of great practical importance. NeuroGrid Simulator
and FreeNet simulator did not simulate the network overlay,
and hence it is hard to extend the simulation to handle new
protocols that need the network proximity information, e.g.
the Pastry protocol. On the other hand, though FreePastry is
focused on Pastry protocol, the simulator is more decoupled
and some of the code can be reused and extended to implement
a simpler protocol, such as Gnutella. However, the serialized
event handling and the lack of simulation on time make it hard
to be extended to simulate the network delay and processor
delay. Furthermore, since there is no P2P simulator that
simulates the hardware of the computer, then the compute-
sensitive protocol as in SETI@Home cannot be simulated by
extending from the existing simulators

4. A Generic P2P Simulator

Researchers, who wanted to simulate a P2P system, tend to
avoid the development of a complex simulator and focus on
some selected areas (such as caching schemes). While some
start an implementation from scratch an increasing number of
researchers build their simulators on top of existing agent
platforms like JADE [1] to speed-up the development. The
general problem of having only special-purpose simulators is
that the results obtained with one simulator are difficult to
validate and often impossible to achieve with another
simulator due to the many hard-coded assumptions of every
simulator.




In this section we present an architecture and implementation
of a generic P2P simulator designed to overcome the problems
of existing simulators namely, extensibility, usability and
level of detail.

4.1 Goals

The criteria used to evaluate the simulators in section three are
used as a guideline for the design of a more generic and open
simulator that will allow users to define models for the
physical network, physical machines, P2P topology, P2P
protocol, P2P application and user behavior.

Gnutella v0.4 is being used for the example implementation of
the protocol for simulation.

4.2 Architecture

Following the desired criteria, a generic P2P simulator
(http://rila.usask.ca/~nyt431/880/Sim.zip) is developed with
the architecture shown in Figure 8. A static step-clock is used
to simulate the timing. By separating the network, protocol
and application from each other, the simulation of various
network topologies, for different protocols, applications, and
user models becomes possible. Hence, three levels have been
defined:

*  Network level (bottom),
*  Protocol level (middle) and
*  User level (top).

Communication can only happen between the directly
connected levels. The Protocol level, that is responsible for
simulating the protocol with desired application, acts as the
interface between the User level and the Network level. Input
information from the user is fed into the Network level
through a GUI interface or a file.
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User Model Behavior User Mode!
User Behavior User Model Behavior
Model User Model User Model
\ \
icati Application
Application Appllcatloni ppiication ]
Application  JBISEealy | roiocel p [FiTiEEE] )
- Protocol - Application Step-
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Figure 8: Architecture of the P2P Simulator

As soon as the information (total number of computer node to
simulate, total number of sub-network to simulate, etc.) is fed
into the simulator, the simulator will create the three levels
and save them in form of serialized objects prior to the
simulation run (allow for re-runs).

As the simulation is running, the events are displayed on the
command prompt screen. As soon as the simulation has
finished, the results (that are saved in a hash table during the

running of the simulation) will be saved into a file for future
analysis. According to [17], either general-purpose language
(such as FORTRAN, Pascal, C and Java) or simulation language
(such as GPSS, SIMAN or SLAM II) can be used for the
“translation of the model into a computer program”[17].
Though simulation languages provide most of the features
needed in programming a simulation model and the details of
the simulation models can be easily changed, a general-
purpose language was selected to provide ‘“greater
programming flexibility”. Since Java is the preferred language
of many P2P programmers it seems reasonable to use it as the
host-language.

4.3 Network Level

Using the GUI interfaces and/or the files, the Network level
creates a two-dimensional matrix storing the distance values
between the nodes. The Network level is responsible for
modeling the user defined aspects of a physical network
deemed relevant for the simulation e.g. varying network load
due to increased P2P communication.

The Network level also creates a user-defined number, of
computer nodes with a user defined number of worker threads
that take care of the messages passing and the processing of
the messages at application node. Each node in the Network
level represents a computer with user-specified hardware
specification to simulate the processor delay.

Interactions between the Network level and the Protocol level
are made through referencing the application node in the
Protocol level obtained from its hash table.

Each node uses four queues to store the message object:
e  Qutbox,
*  Inbox-For-Network-Delay,
*  Inbox-For-Processor-Delay and
* Inbox.

When the application node sends a message object from
computer node X to another application node at computer
node Y the following iteration will be followed:

i The message object, with a time-stamp, that is stored
in the Outbox of the computer node X is obtained by
the worker. It will deliver the message object to the
Inbox-For-Network-Delay at the destination node Y.

ii. When all the workers are done with the delivery
process the step-clock is incremented and the
workers check the message objects in the Inbox-For-
Network-Delay with the 2-D distance matrix and the
congestion network delay. If the network delay has
fulfilled, the message will be stored in the Inbox-For-
Processor-Delay, with another time-stamp, else, it
remains in the Inbox-For-Network-Delay.

iii. When the step-clock is incremented, the worker will
look at the processor delay of the computer node Y
and check whether the message object in the Inbox-
For-Network-Delay should be moved into the Inbox
for the application node to process. If the processor
delay has not been reached, the message object
remains in the Inbox-For-Processor-Delay.

iv. When the step-clock is incremented again, the
destination port number encoded in the message
object in the Inbox will be obtained by the worker,



and the reference to the application node will be
obtained to send the message object to the
application node for process. After the application
node processed the received message object, it will
check the hash table that contains the scheduled task
for execution. Any created message object is stored
in the Outbox and the iteration is repeated from (i)
when the step clock is incremented again.

The simulator follows the 2-steps mechanism: for each unit of
user-time, it takes 2 step-times in the simulation (the step
clock is incremented twice). Hence, in the first step-time,
iteration step ii and iv are executed. In the second step-time,
iteration step i and iii are executed. With this design, the
network delay and processor delay can be simulated, and there
is no mixing up of the order of the message arrived at each
box. And most importantly, this enables several tasks (or
events) being carried out at any time.

4.4 Protocol Level

A Peer class is used to provide an interface for the workers in
the network level and to enable the sending of messages from a
computer node to an application node. Any protocol
implementation has to implement this Peer interface class.

In the example implementation the GnutellaPeer class takes
care of the Gnutella v0.4 protocol level issues, such as keeping
track of the connection between the peers by keeping a table of
the IP address and the port number of the directly connected
peers. Though it can be used as the application node, it is not
providing much for the application level. An application can
be easily built by extending the protocol class by overriding
the message processing methods.

Reflection is used for the creation of application nodes using
data specified by the user. The user needs to specify the IP
address and port number of the peers created. Upon being
created, the application node/peer can use the Registration
class provided by the Network level to register itself to port of
the computer node using the IP address provided.

The implementation of the message object is very important in
this simulator. The message object contains the time-stamp,
reference to the message content object, the origin’s IP address
and port number, and the destination IP address and port
number. An instance of the Communication class (message
object) represents packet sent through the connections
between the connected computer nodes. A Gnutella peer first
creates an instance of the type of the message desired to be
sent and then creates an instance of the class Communication
to store the reference of the message instance. Then the peer
sends the Communication instance as a message object using
the Registration class.

4.5 User Level

Unlike the other levels the User level has not been
implemented in the current version of the generic P2P
simulator. A UserModel class contains the method signatures
for the decision-making needed from the Protocol level. It
should have a reference back to the Peer instance. Upon
creation and referenced to the associated Peer, it should add
the tasks into the tasks scheduler in the Peer instance. Each
Peer instance should have an instance of the UserModel class,
as the behavior of the user with the same UserModel can be
different due to the Peer’s performance. When the instance of

UserModel is consulted, it should check its states and when an
event is to be initiated, it should add the task into the task
scheduler in the Peer instance at the protocol level by
referencing the current time with the static step-clock.

4.6 Evaluation

In its current Java 1.3.1 implementation, the simulator
consists of 29 classes with approximately 3599 lines of code.
There are 10 classes (899 lines of code) for Platform level, 12
classes (508 lines of code) for Gnutella Protocol with user task
scheduling, and 7 classes (2159 lines of code) for GUI
interfaces including the main method class.

Generic P2P Simulator

Event-processing Parallel

Usability Very easy (with the aid of GUI)

Extensibility Easy

Configurability (Easiness) | Very High (Medium)

Interoperability High (It is generic enough to
connect the simulator with
other application such as
agents, and real application by
just implementing a helper
class in the protocol level.)

Level of Detail High.

Build-ability High.

Simulating User behavior Yes.

Simulating Computer | Yes.

Hardware

Simulating network overlay | Yes

Simulating time Yes

(Network delay) (Yes)

Table 3. Evaluation of the P2P Simulator

Table 3 shows the evaluation made using the criteria listed in
Section 3.1. Figure 9, 10, 11 and 12 shows the empirical
testing result obtained using two machines. The graph “For
Windows” is obtained from a machine with a AMD Athlon
Processor 800Mhz with 524 MB of RAM running Microsoft
Windows 2000, and the graph “For Sun” is obtained using a
Sun SunFire3800 with four UltraSparc III CPUs running at 750
MHz and 8 GB of RAM running Solaris 8.2. Note that the data
with 225 nodes cannot be collected from the simulation
running on the Sun machine due to memory leak.

The graphs show the records of the time used for object
creation (to create the simulated environment and entities),
saving serialized objects into file, running the simulation, and
saving the results (storing the events created in the
simulation) into files. For each simulation with N nodes, there
is a total of (N-1)+(N-1)*(N-2) number of events (message sent
from a peer to the other).

The simulator takes a longer time to create objects on the Sun
machine than on the Windows platform. Hence, it is better to
create the simulation environment in a Windows environment
and execute the simulation on the more powerful Sun machine.




However the simulation with 225 nodes (50176 events) cannot
be performed in the Sun environment due to memory
limitations of the JVM under Solaris.

Memory consumption is due to the storing the events of the
simulation in a hash table. While the simulator can handle
more than thousand nodes if the total number of generated
events is less than 50176 events, more event producing
simulations require the saving of events into files to avoid
memory problems.
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Figure 9: Time used to run the simulation for 30 step-times.
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Figure 10: Time used to create the simulation objects.
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Figure 11: Time used to save the serialized objects into file.
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Figure 12: Time used to save the event-messages into file.

4.7 Future Work

Future work will focus on using visualization tools to create a
graphical view of the events and connection in the network
and adding the user model layer.

After adding the user model layer, work will focus on
collecting data for the various layers e.g. human desktop
usage, network traffic. To validate the results of the simulation
will be compared to existing Gnutella 0.4 file-sharing
applications. Especially the COMTELLA system [25] will be
used for comparisons since it is a subject of an ongoing
performance and usability study.

5. Conclusion

This paper provided and overview of existing P2P protocols,
examines the simulators and proposes a generic P2P
simulation model. The simulator enables the simulation of
P2P networks with different network topology, user models,
and applications.
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