
 1

Computation in Peer-to-Peer Networks
Lichun Ji

Department of Computer Science

University of Saskatchewan, Canada

lij589@mail.usask.ca

ABSTRACT
Peer-to-Peer (P2P) networks are the latest addition to the universe
of distributed systems. Emphasizing decentralization and self-
organization the P2P networks tend to be more robust and scalable
than other forms of distributed systems. Especially in the domain
of file-swapping P2P networks seem to outperform other
approaches largely due to the anonymity of the participants in the
peer-network, low network costs and the inexpensive disk-space.
Trying to apply P2P principles in the area of distributed
computation was significantly less successful. The much referred
SETI@home system and its look-alikes have a far smaller reach
and seem to be very limited to single-process multiple data
problems.

This paper focuses on the issues and existing approaches for using
the idle resources in an enterprise network. Using the results of an
ongoing study on the amount and quality of idle resources in a
local network it explores the key issues in using peer resources for
distributed computation.

General Terms
P2P, Distributed Computation

Keywords
Awareness in P2P, Computation in P2P

1. Motivation
The continuing growth in processing power, memory and
bandwidth - which have doubled in the past every 18, 12 and 9
months respectively - has dramatically changed desktop
computing. While the desktops of the 90’s were resource-sparse
devices barely capable of supporting more than one desktop
application a time, today’s desktops are resource-rich devices that
hardly every reach high usage of their resources.

With the pervasive deployment of desktop machines and
increasingly powerful handheld devices, an ever-growing pool of
resources is emerging. Currently there’re over 400 million
computers worldwide of which the majority is either idle or
underutilized.

This paper investigates the use of Peer-to-Peer computing as a
possible approach for utilizing the idle resources within an
enterprise for distributed computation.

The paper is organized as follows. Section 2 provides an overview
and introduction in P2P networks and is followed by a section
reporting the results of a study on the P2P potential. The specific
problems of using P2P networks for distributed computing are
discussed in section 4. An overview of existing systems to
support P2P style computing is given in section 5. The paper
continues with an experiment on using awareness as a means to
achieve better performance and concludes with a summary and
outlook on future research.

2. Peer-to-Peer Systems
Peer-to-Peer (P2P) refers to a class of systems and/or applications
that use distributed resources in a decentralized and autonomous
manner to achieve a goal e.g. perform a computation. The members
of the P2P network (called peers) are always in total control of
their local resources and can therefore choose to impose or change
policies regarding their use, which makes this approach different
from other distributed computing approaches e.g. the client-server
model.

Another important aspect of P2P networks is that the roles of the
peers in the network are dynamic and emerge. Rather than having
static and predefined roles for the participants like in the client-
server model, P2P networks rely on emerging and dynamic roles
as a result of an ongoing self-organization.

2.1 Self-Organization & Awareness
Self-Organization is a key concept in P2P systems since roles are
not predefined and have therefore to emerge. Most often P2P
networks achieve self-organization as a result of self-awareness of
peers. An example for such self-awareness is the Gnutella 0.6
Protocol that allows peers to “volunteer” as ultra-node based on
perceived network bandwidth, local resources and user behavior.

In addition to changing their roles in the network based on self-
awareness peers can evaluate other peers and adapt their
functional dependencies accordingly. By storing the results of
evaluations in form of persistent models a peer achieves peer-
awareness enabling it to avoid unpromising peers in the future.

While self-awareness and peer-awareness are essential to all P2P
networks distributed computing also requires a task-awareness.
Peers need to be able to analyze and express the requirements of
tasks as well as the consequences if they accept or reject a task to
avoid ripple effects in the networks.

 2

2.2 Classification of P2P
The functionalities and application domains of P2P networks lead
to four main categories [28]:

• File sharing seems to be the most successful application for
P2P networks. The basic idea of file sharing is to use the idle
disk space for storage and the available network bandwidth
for search and download. Napster, Gnutella, Freenet,
FastTrack [2, 3, 4, 9] is just a few of this fastest growing
segment of P2P technology.

• Collaboration systems allow application-level collaboration
between users. This includes real-time exchange of message
(Project Jabber [33]), online game/gambling (Zoogi [34]), etc.

• P2P platform like JXTA [5] try to support the developers
of P2P applications by offering a wide range of libraries and
services and like request routing, peer discovery and peer
communication.

• Distributed computing (in P2P) tries to harvest unused
processing cycles of computers in the network and to
delegate and migrate tasks. The SETI@Home project [10],
which tries to use the idle resources of participating peers for
its search for extraterrestrial intelligence, is the most often
used example of a successful distributed computing
application.

Since this paper’s focus is on the use of P2P networks for
distributed computing the following discussions of issues,
approaches and systems will be limited to this single issue
ignoring other P2P aspects.

3. Potential of P2P Computing
While it is fairly common knowledge that many of the deployed
computers (e.g. desktops, workstations etc) are underutilized it is
difficult to obtain exact numbers. Organizations and individuals
tend to be reluctant to publish the degree of underutilization of
their machines due to fear of negative consequences.

We therefore developed a resource-monitoring program for the
popular Windows platforms (using Microsoft DotNet) that
records in 10-second intervals the current list of processes and the
current usage of memory, processor and network. The resource-
monitor which runs as a non-invasive system-tray process writes
the data into a text -file on a local drive to avoid remote monitoring
which would limit the cooperation of potential participants.

3.1 Setup of the Experiment
This experiment was performed using some of the desktop
machines in the lab for mobile and ubiquitous computing
(MADMUC [31]). A total of 13 machines were involved
consisting of four pool machine that are shared by all researchers,
seven machines assigned to individual graduate students and two
machines used by faculty members.

The tests were conducted over a period of 7 days (Feb 25th –
March 4th) and a period of 2 days (March 26 h – March 27th). The
results of both tests were very similar in terms of the resource
usage. Due to space limitations only the results of the first test
will be discussed.

3.2 Results
The used data set is 69 MB large and consists of approximately
1,572,480 data points. Analyzing the large data set indicates:

1. The daily resource usage of available resources is in average
below 12% in [Table 1]. Especially the network usage is with
7% relatively low.

Resource CPU Memory Network

Average Usage 10.07% 11.32% 3.61%

Peak Usage 15.14% 12.64% 6.61%

Table 1: Daily Resources Usage

2. The usage of overall resources is medial with little
fluctuations. [Figure 3.1]

In the graphs of this section CPU is represented as continuous
lines, memory as dotted lines and network is represented as
dashed lines.

0

5

10

15

2/25 2/26 2/27 2/28 3/01 3/02 3/03 3/04

Figure 3.1: Weekly Resource Usage (%)

3. The peak usage of resources of individual computers varies
significantly on per day usage [Figure 3.2].

0

25

50

75

100

2/25 2/26 2/27 2/28 3/01 3/02 3/03 3/04

Figure 3.2: Peak Usage (%) for Individual Computer

Columns: 1st CPU, 2nd Memory, 3rd Network

4. The daily resource usage varies from resource to resource
[Figure 3.3]. Below is the data for a Thursday (workday)
and Saturday (free) is shown.

 3

3.3 Impact on P2P Computation
The above data indicates that there is enough CPU, memory and
most importantly network capacity available to support compute-
intensive P2P applications without impacting the normal use of
the machines.

• Daily resource usage of overall resources is relatively low,
allowing the deployment of resource sharing networks. The
surprisingly low usage of available network capacity (7% in
average) ensures that inter-peer communication will not
impact user applications.

• The medial overall resource usage indicates that the
environment is not very dynamic and seems to follow
predictable patterns of usage. However the test period is
small and further tests will be required to confirm this
assumption.

• The peaks in resource usages indicate that resources have to
be considered volatile, enforcing the use of redundant
execution, check-pointing and maybe even transaction
management middleware.

 Thursday 2/ 27/03

0

5

10

15

0 4 8 12 16 20

Saturday 03/01/03

0
5

10
15
20
25

0 4 8 12 16 20

Figure 3.3: Daily Average Usage (%)

4. Computing in P2P Networks
While file-sharing has been a well researched area in P2P networks
little work has focused on the issues of distributed computing in
P2P networks. In this section the issues using a P2P network for
computation are discussed.

4.1 Tasks, Concurrency and Mapping
Dividing a complex computation into smaller computation units
(tasks) and assigning them to different processors for parallel
execution are important issues in parallel and/or distributed
computing [11]. Determining the tasks and distributing them is
pinnacle for obtaining high performance and insure that the

number of concurrently executed tasks is maximized so that the
complete overall compute time is minimized.

Tasks, here, refer to program-defined units of computation into
which the main computation is divided by means of
decomposition. There’re two main types of tasks, independent and
dependent tasks. A set of independent tasks can be executed in
any sequence, however most often the tasks are dependent and
rely on the data produced by other tasks and thus may need to
wait for these tasks to finish execution.

4.1.1 Task Decomposition Techniques
Decomposition is the process of dividing a complex task or
computation into smaller parts, some of all of which may
potentially be executed in parallel. Decomposition identifies
elements that can be executed concurrently and divides a complex
task into sub-tasks that can be executed in parallel. The large
number of existing decomposition techniques can be classified into
categories [11]:

• Recursive decomposition. A method divides problems into
a set of independent sub-problems and each one of these sub-
problems is solved by recursion.

• Data-decomposition. A method for partitioning a large data
structure on which the computation is performed. This data
partitioning is used to induce a partitioning of the
computation into sub-tasks.

• Special purpose decompositions. These methods apply to
specific classed of problems, such as exploratory
decomposition for problems that search of a large problem
space, and speculative decomposition for output-oriented
problems.

• Hybrid Decompositions. Since the decommission techniques
are not mutually exclusive they can be combined to achieve
better results. A combination of different decomposition
techniques is called hybrid decomposition.

The selection of the appropriate decomposition technique is of
course highly application specific and will be therefore not be
discussed in this paper.

4.1.2 Granularity and Task interaction
The number and size of tasks into which a problem is decomposed
determines the granularity of the decomposition. From this
perspective, a decomposition process can be either fine-grained -
if the problem can be dived into a large number of small tasks - or
coarse-grained otherwise. A concept related to granularity is that
of the degree of concurrency. The potential for concurrent
execution usually increases as the granularity of tasks becomes
smaller (finer) and their numbers increase.

The sub-tasks that result from a decomposition often share input,
output or intermediate data. The interaction among tasks running
on different physical processors limits the ability to obtain
unbounded speedup (ratio of serial to parallel execution time) for
computation.

 4

While fine-grained decomposition is highly desirable since it
allows for a better distribution over the available nodes and
therefore a better utilization of computing resources the network
bandwidth and latency in P2P networks often enforce a more
coarse-grained decomposition.

4.1.3 Mapping
Mapping is the mechanism by which tasks are assigned to
processes/processors for execution. A mapping algorithm should
seek to maximize the concurrency of tasks by:

• Distributing independent tasks onto different
processes/processors.

• Minimizing the total completion time by ensuring that
processes/processors are available to execute the tasks on the
critical path as soon as such a task becomes executable

• Minimizing the interaction among processes/processors by
mapping tasks with a high degree of mutual interaction onto
the same process/processor.

It is important to note that these objectives often conflict with
each other. For example, minimizing the inter-process interaction
will enforce multiple tasks onto a single process resulting in poor
balancing of load.

Mapping techniques used in parallel algorithm can be classified
into two categories [11]: static and dynamic. Static mapping
techniques distribute the tasks among processes prior to the
execution of the algorithm. Static mapping is used in conjunction
with a decomposition based on data partitioning. Dynamic
mapping techniques distribute the tasks among processes during
the execution of the algorithm. Dynamic mapping is necessary in
situations where a static mapping may result in a highly
imbalanced distribution of work among processes or where the
dependency of task is dynamic and unknown at the beginning.
Dynamic mapping techniques are usually classified as either
centralized or distributed.

4.2 Resource Allocation in P2P
A P2P network consists of autonomous peers that can choose to
leave or join the network without notice. Consequently P2P
networks are very dynamic and the individual peer resources have
to be considered highly volatile. In addition the dynamics of the
P2P network make the process of locating resources difficult.

Three basic strategies [1] for resource allocation in P2P networks
have emerged:

• Centralized Service Model. The peer connects to a
centralized directory server, which stores all information
regarding location and usage of resources. While resulting in a
single point of failure this design has the advantage of
simplicity and good performance (e.g. Napster [2]).

• Flooding Model. The flooding model avoids a central point
of failure by using an unstructured distributing approach.
Since no single peer knows about all resources, peers in need
for resources flood the network with requests. Using

forwarding and range delimiting actions (e.g. TimeToLive,
TTL) the reach and network impact can be controlled (e.g.
Gnutella 0.4 & 0.6).

• Routing Model. The routing model adds structure to the
way information about resources is stored using distributed
hash tables. Hash tables significantly improve lookup times
(e.g. FreeNet [4] and Pastry [14]) at the expense of the
autonomy of peers.

4.3 Volatile Resources
In a P2P network, the autonomous peers are free to join and leave
the network at any time. Consequently the overall topology of a
P2P network is unpredictable as the set of nodes that makes up
the network varies over time. Since P2P networks are resource-
sharing systems the resources of the system have to be considered
volatile. This raises the following problems:

• Reliability. Due to the unconstraint joins/departures of
peers, the average reliability of any single node is low.
Ensuring the reliability of services and resources is a major
challenge. The reliability of P2P network can be defined in
two dimensions: vertical reliability (ensuring that a peers
local resources are reliable) and horizontal reliability
(addressing multi-peer reliability operations).

• Fault resilience. Potential changes in the availability of
peers require support for automated fault recovery and task
resuming. This can be achieved by redundant execution, use
of checkpoints and task migration.

• Performance. Performance and fault-resilience are two
primary aspects when evaluating a system’s Quality-of-
Service (QoS). In a P2P system, Quality-of-Service refers to
the capability to ensure certain service parameters.

4.4 Executing Code
Peers in P2P network often have to interact with unknown or
unfamiliar peers and need to manage the risk involved with the
interactions (transactions) without any presence of trusted third
parties or trust authorities. P2P networks have therefore unique
requirements when implementing the models for identifying,
authenticating and authorizing users and applications across a
widely distributed and changing network. Security threats in
executing third-party code can be viewed from two perspectives:
• Resource user –Hostile Host Threat

The host can’t be trusted to execute the code.
• Resource provider – Hostile Code Threat

The code that should be executed can’t be trusted.
To address these problems it necessary is to use encryption,
authentication and execution of code in secure environments e.g.
sandboxes. In addition information such as feedback about past
experiences can help in making decisions. Reputation systems [29]
provide another way for building trust through social control
without trusted third parties.

 5

5. Case Studies
Utilizing the idle resources is by now means a new idea. Over time
many different approaches have been developed. In the following
four well established approaches will be discussed namely the
now classical Condor system which is one of the earliest systems
to harvest the unused resources, the Avaki system as an example
of the currently emerging grid-oriented approaches, the famous
SETI@Home network and the JXTA platform.

5.1 Evaluation Criteria
To evaluate the above-mentioned systems the following criteria
will be used.

Supported Computing Model

In this paper three different computing models for P2P computing
will be considered.

• Single-Program-Multiple-Data (SPMD). Copies of the
same program are being executed on different
processes/processors with different input. The programs do
not coordinate/communicate.

• Multiple-Program-Multiple-Data (MPMD). Different
programs are being executed on different
processes/processors with the same or different input. The
programs have little coordination/communication – they are
considered loosely coupled.

• Distributed objects. The objects of an application are
distributed over the peers using an object-oriented
middleware [30]. The objects are tightly coupled and have
required therefore coordination/communication.

Provided Infrastructure

A P2P network for computation must provide core functionalities
for task management, communication and security.

• Task management. The system should provide basic
managements for task/resource allocation, load balancing,
state checking and fault recovery.

• Communication. Communication is in a distributed
computing is of great importance for task scheduling, task
interaction and management. Providing a set of reliable and
different (e.g. high and low-level) communication means is
therefore essential.

• Security. P2P network requires support mechanisms for
authentication, authorization, secure and safe execution and
peer privacy.

Integrating of existing Code

To minimize adaptation costs it is important to ensure that
existing code can be used without the need of major changes.

Supported Platforms

P2P networks tend to be large and heterogeneous therefore
scalable approaches for handling dissimilar architectures e.g.
operating system are required.

Customization

In order for each job to be executed in a manner that optimizes
performance and resource utilization mechanisms for expressing
user, task and machine policies are needed.

5.2 Condor
Work on Condor was started in 1988 by the Computer Sciences
Department at the University of Wisconsin-Madison with the aim
of developing a general-purpose framework that would allow the
use of idle CPU cycles for research purposes. Condor is designed
to support the execution of independent tasks following the
SPMD model. It provides a flexible platform-independent
framework for distributing “jobs” (tasks) over a pool of machines
(peers) by providing a basic job queuing mechanism, scheduling
policies, priority schemas and resource monitoring & management.
It is built on the principle of distributing batch jobs around a
loosely coupled cluster of computer to enable a high throughput
computing (HTC) system.

Figure 5.1: The Layers of Condor

Users submit their sets of serial or parallel tasks to Condor in
form of jobs. The Condor matchmaker places them into a queue,
chooses when and where to run them based on job needs, machine
capabilities and usage policies. Condor monitors the progress of
jobs and informs the user upon completion of their jobs (Figure
5.1). Condor uses a variety of different concepts to ensure fast
and safe execution of jobs.
To protect the host, all jobs are executed in a restrictive sandbox
that prevents/intercepts invoking any system calls. Only “remote”
system calls are permitted since they will be executed on the host
of the job’s owner. In addition to this Condor supports strong
authentication, encryption, integrity assurance, as well as
authorization.
To ensure the fast execution of jobs Condor uses the following
techniques:

• Classified Ads (ClassAd)

Ads are used for job/machine mapping, ensuring that the
requirements of the jobs and the capabilities & policy of the

 6

machine fit. A centralized matchmaker performs this mapping. All
machines in a Condor pool advertise their attributes, such as
available RAM memory, CPU type and speed, virtual memory
size, current load average, the conditions under which will agree to
execute a Condor job and the preferred type of job. Likewise,
when submitting a job, the user specifies a job ClassAd with
requirements and preferences. The job ClassAd includes the type
of machine you wish to use.

• Queuing mechanism with priority settings

Each user has a Condor queue for all the jobs he submitted. The
job priority is a means for users to identify the relative importance
of individual jobs within a submitted set of jobs. Condor also uses
a user priority ranking to determine the amount of pool resources
given to the jobs. The higher the priority of the user the more
resources are assigned to her/his jobs.

• “Flocking” technique.

Condor supports the linking of independent Condor resource
pools. In a linked environment a Condor pool may transfer a job
that is submitted to another pool that accepts “foreign” jobs.

• “Up-Down” algorithm for scheduling.

The longer a process runs, the lower its priority becomes. This
policy is meant to ensure that users avoid long-lived jobs ensuring
that the job queues are kept shot.

• Checkpointing.

Checkpointing is used to compensate for unexpected failures of
the host and or job. Condor requires that each job is capable of
saving its state in certain time intervals in form of an image and
offers a library to implement this functionality. A checkpoint
image contains the process's data and stack segments, as well as
information about open files, pending signals, and CPU states.
When the job is restarted, the state contained in the checkpoint file
is restored using at startup routines in the checkpoint library. The
process resumes the computation at the point where the
checkpoint was generated.

Condor harvests the otherwise wasted CPU power of desktops,
workstations, servers and clusters. According to the usage
statistics [32] Condor delivers on average 650 additional CPU
days (the sum of all CPU run over one day) to the researchers at
the University of Wisconsin-Madison.

Condor is designed primarily for SPMD but supports also
MPDM. Condor offers a variety of security features and has
been enriched with a large number of inter-job communication
libraries e.g. MPI.

Task management is centralized and ensures that jobs are executed
in an efficient and secure based on the specified requirements of
provider and consumer. However a consumer has little control
over the location and manner in which its job is executed.

5.3 Avaki
Andrew Grimshaw at the University of Virginia initiated the
Avaki project [19] in 1993, and re-launched it as Avaki
Corporation in 2001. Avaki is a grid middleware that enables
sharing of data, applications, and computing resources targeting
the enterprise-wide computing area.

The Avaki grid is can contain desktops, workstations, servers and
clusters. Each machine in the grid is autonomous and consequently
the system management is distributed. Avaki is able to
interoperate with queuing systems, load management systems,
and/or scheduling systems. Like Condor queues are used to
manage the resources and control the access.

Avaki is composed of three services layers (Figure5.2):

• The Grid Protocol layer, which provides protocol adapters,
security, and naming and binding;

• The System Management Services layer, which provides
capability for implementing and managing distributed
solution;

• The Application Services layer, which provides high-level
services;

Application
Services

Job Scheduling,
Distributed

Distributed File
System

System
Managemen

t Services

Monitoring, Load
Balancing

Policy
management

Metering,
Accounting

Failover +
Recovery

Grid
Protocol

Identity, Authentication, Encryption,
Access Control

Scalable Naming and Binding

Communication Protocol Adapter

Protocol
Adapter

TCP/IP RPC JXTA .NET

Figure 5.2: The Layers of Avaki

Each resource made available to the Avaki grid has a unique logical
identifier. Avaki manages grid resources and application as
follows:

• Access controls. A user or application may or may not have
access to specific service or host computer.

• Matching. Though matching of application requirement and
host characteristics.

• Prioritizing. Through prioritization based on polices and
load conditions.

To ensure the safe and secure execution of the code Avaki uses the
following approaches:

 7

• Checkpointing

Avaki uses checkpointing to minimize the loss of information in
the event of a host or network failure. Hosts, jobs and queues
automatically back up their current states.

• Redundancy

Avaki networks are designed to scale allowing for the use of
redundancy as an additional means for coping failures. Avaki
migrates running applications to another host based on predefined
deployment policies and resource requirements.

• Authentication

The Avaki authentication reduces the need for other software-base
security control, substantially reducing the overhead of sharing
resources. Avaki’s authentication is based on the resource identify
and uses the Public Key Infrastructure (PKI) technique. It allows
local administrator control the access to their resources. It also
includes user access authorization and resource access
authorization.

The Avaki grid provides high-end computing power for scientific
problems and is currently being evaluated at various research labs.
It supports SPMD, MPMD and offers a range of inter-job
communication options. As shown in figure 5.2 task management,
secure and safe execution, load management is all integral parts of
the Avaki grid. Avaki also supports all required security
functions including authentication of provider and consumer,
authorization and access. But by relying on job queues the
consumer has again little control over the way in which and the
location where its jobs are executed.

5.4 SETI@Home

Figure 5.3: SETI@home Architecture

The idea for SETI@Home, as the project was called, came in 1996
from computer scientist David Gedye, along with Craig Kasnoff
and astronomer Woody Sullivan. SETI (the Search for
Extraterrestrial Intelligence) is a collection of research projects
aimed at discovering alien civilizations using radio telescopes.
Since the analysis of the extensive radio telescope data (about 35
GB per day) requires significant computing resources a P2P
approach for distributed computing was chosen. SETI@Home

engages internet users around the world in the effort of the
distributed signal analysis.

As shown in Figure5.3, a central SETI@Home server divides the
data into chunks (work-unit) designed for an average desktop
computer. Participating peers contact the server and download a
chunk of data. After downloading the peer starts processing the
data in its idle time e.g. when the screen-saver is active. The result
of the analysis is sent back to the central server and a new cycle of
requesting-data, processing data and reporting results begins.

The tasks in SETI@Home are independent and can be executed
without the need of any connection. Network connectivity is only
needed for receiving data and sending results. The peer data -
including the number of work units completed, time of last
connection, and team membership – are reported on web-sites
allowing users to compete for the biggest CPU contributions.
SETI@Home uses a check-pointing mechanism to recovery from
faults by saving all 10 minutes the dataset and the progress in
analyzing it to the hard drive. SETI@Home also injects "test
signals" intentionally into the system to confirm that the hardware
and software is working properly. The "suspicious" responses to
work unit or the lack of reported results will be recorded and used
in evaluating the level of trust assigned to the peer.

The major contribution of SETI@home is to demonstrate how to
apply distributed computing challenges in a P2P network.
SETI@Home has managed to attract several hundred thousand
active participants, which hope to be the “one” to discover ET.

SETI@Home is limited to SPMD problems and offers therefore
no communication support (except for requesting data and sending
results). Hiding the details of the communication protocols,
requiring that users install SETI@Home software prior to joining
the network and avoiding any code migration provides basic
security. SETI@Home uses redundancy and tests data to ensure
correct processing and flags suspicious peers.

Due to the large number of freely available computing resources no
efforts for optimizing the execution of tasks are necessary.
SETI@Home has only a single consumer and is in total control of
where the data chunks are being processed.

5.5 JXTA
Project JXTA was started at Sun Microsystems in 2001. It is an
open-source project (www.jxta.org) and was initiated by Bill Joy
to standardize a set of protocols for building P2P applications.
JXTA aims at providing a general framework that is independent
of software and hardware platform.

JXTA defines currently six protocols:

• Endpoint Routing (ERP),

• Rendezvous Protocol (RVP),

• Peer Revolver Protocol (PRP),

• Peer Discovery Protocol (PDP),

• Peer Information Protocol (PIP) &

 8

• Pipe Binding Protocol (PBP).

Figure 5.4: JXTA Architecture

Currently Java and C implementation of the JXTA protocols are
available and a .Net version of JXTA is in development.

JXTA has several powerful platform-independent features that
make it widely adopted by current P2P application designers, e.g.
the Anthill [26] project.

• Unique IDs for entities and advertisements.

Each entity (peer, peer group, pipes, advertisement, etc) is
assigned and identified by a unique ID. Similar to Condor, all
resources in JXTA network are represented by advertisements but
the ads in JXTA are XML formatted making them platform
independent and extendable. Peers cache, publish and exchange ads
to discover and find available resources. The advertisement
mechanism makes all available network resources visible to peer
and peer group architecture for work group generation.

• Concept of Peer groups .

Peers in the JXTA network are linked to at least one peer group,
which is a dynamic set of peers that share interests and have
agreed upon a common set of policies and services. Each Peer
Group is a virtual network space consisting of a subset of all
devices accessible via an overlay network. The JXTA overlay
network is a middleware messaging system designed to allow for
end-to-end connectivity between devices across sub-networks.

• Transparent Communication via Pipes

JXTA uses asynchronous communications channels, called pipes,
for sending and receiving messages. Pipes offer two modes of
communication: point-to-point pipe and propagate pipe and allow
for a simple and transparent form of communication.

• Rendezvous peers.

JXTA provides a revolver services based on Rendezvous peers.
Rendezvous peers are well-known peers that have agreed to cache
a large number of advertisements for exchanging and trading
information.

• Peer-monitoring.

Peer-Monitoring is a core mechanism of JXTA. It enables control
of the behavior and activity of peers in a peer group and can be
used to implement task management function for fault detection
and recovery.

• Entry-level trust model.

Project JXTA provides an entry-level trust model, Poblano [16],
which permits peers to be either own certificate authorities or
socially accumulated inter-peer communication. In addition, the
secure communication in JXTA is based on the Transport Layer
Security (TLS).

JXTA provides a general-purpose P2P network programming and
computing infrastructure and consequently it supports basic
security and communication features. However due to its platform
nature much of the task management, and the support for different
computing models is left to the developer of the application.

5.6 Summary
The above-mentioned systems showed great diversity of
approaches. While all support SPMD and some support MPMD
only JXTA is capable of supporting distributed objects.

But while the computing model can be seen as a less important
design issue of the distributed computing application, the mapping
of tasks to processes/processors is essential. With the exception
of JXTA (it has no mapping implemented) the above-mentioned
systems rely on static and centralized mapping approaches.

As mentioned earlier self-organization due to awareness is an
essential component of P2P networks. Once the peer is aware of
itself (self-awareness), the network environment (peer-awareness)
and the tasks (task-awareness) it can determine the “best” peers
for performing a task. Awareness can therefore be used for a
decentralized and dynamic mapping of the tasks allowing for more
autonomy and flexibility of consumer and provider. Using such a
decentralized and dynamic approach would allow for a better
distribution of (mapping) load and enable more flexible, localized
and reactive mapping. Using past experiences as well as usage
negotiation (between provider and consumer) would also be
possible enabling a better mapping.

6. Awareness & P2P Computing
To evaluate the idea of using awareness as a means for enabling a
decentralized and dynamic mapping of task a simulation was used.
The simulation consists of clients (consumers) and servants
(providers) and is aimed at studying the impact awareness has on
the throughput when using independent tasks.

6.1 Self-Awareness Experiment
The simulation uses the recursive calculation of Fibonacci numbers
as an example workload. In the simulation clients can request the
calculation of a Fibonacci number from one of three servants with
different performance features (fast, medium and slow). The
clients can either use a randomly selected servant or the “best”

 9

currently available one. The two clients are implemented as
threads on the same machine and have a well-known table of the
entire servant group, including the servant network position and
service binding but differ in terms of their servant selection
algorithm:

• The normal consumer/client selects the servant randomly.

• The ‘Smart/Aware’ consumer selects the best performance
(shortest elapse time of task completing) servant basing on
the historical average task completion time of each servant.
The average is calculated by the following formula:

Ai = α * Ci + (1 - α) * Ai-1 (0 ≤ α ≤ 1) (1)

Where

C: the completion time of one service.

A: the average completion time of the period of time.

i: time number of one service call, i.e. first, second, …

α: Dependency of completion time of last call and previous
calls. The higher α is, the more emphasis is given to the
completion time of the last call when determining the servant
performance.

Figure6.1 Simulation architecture

1* - smart selection: chose the fastest servant base on
the history of task completion time;

1? - random selection: chose the servant randomly;

6.2 Results
The results are based on data collected from one-hour tests and a
α value of 0.8 (for the formula 1). Figure 6.2 and 6.3 show the
average throughput and service completion time respectively. As
expected the ‘smart/aware’ approach is significantly better with
almost twofold throughput and halved completion time after a
short downturn at the beginning where the initial data are
collecting

0
10
20
30
40

1 11 21 31 41 51
Aware Normal

Figure 6.2: Average Execution Throughputs

0
2
4
6
8

10

1 11 21 31 41 51

Figure 6.3: Average Completion Time (Minutes)

7. Summary and Future Work
P2P networks are a recent addition to the already large number of
distributed system models. Based on decentralization and self-
organization P2P networks appear to be more scalable and robust
than other approaches which makes them ideal candidates for
harvesting the ever-growing pool of idle computing resources.

The focus of this paper is on the issues and existing approaches
for using the idle resources in an enterprise network for distributed
computing. The paper reports about an initial study on the
availability of idle computing resources, points out the key
challenges in using P2P networks for distributed computing and
provides an overview of existing systems and approaches.

The idea of dynamic and decentralized mapping is identified as a
key issue of using P2P network for distributed computing and
evaluated using a simulation.

Future work will focus on using more refined awareness concepts
for mapping sets of dependent tasks. Staring with the use of larger
and more feature-rich simulations the aim is to develop techniques
that can be integrated in existing P2P middleware.

8. REFERENCES
[1] Dejan S.Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran

Nagaraja, Jim Pruyne, Bruno Richard, Sami Rollins, Zhichen
Xu, HP Laboratories Palo Alto. Peer-to-Peer Computing.
HPL-2002-57, March 8th, 2002

[2] Napster, http://www.napster.com/

[3] Clip2, http://www.clip2.com. The Gnutella Protocol
Specification v0.4, Document Revision 1.2

[4] I.Clarke, O.Sandberg, B.Wiley, T. W. Tong. Freenet: A
distributed anonymous information storage and retrieval
system.

[5] Project JXTA, http://www.jxta.org

 10

[6] Ian Foster. The Grid: A New Infrastructure for 21st Century
Science. February 2002. http://www.aip.org/pt/vol-55/iss-
2/p42.html

[7] Lance Olson. .NET P2P: Writing Peer-to-Peer Networked
Apps with the Microsoft .NET Framework. Microsoft
MSDN magazine

[8] jxta.org. Project JXTA: An Open, Innovative Collaboration.
http://www.jxta.org/project/www/docs/ OpenInnovative.pdf

[9] FastTrack, http://www.fasttrack.net

[10] SETI@home, http://setiathome.ssl.berkeley.edu

[11] Anath Grama, Anshul Gupta, George Karypis, Vipin Kumar.
Introduction to Parallel Computing. Second Edition

[12] G.A.Geist, J.A.Kohl, P.M.Papadopoulos. PVM and MPI: a
Comparison of Features. May 30, 1996

[13] M. Beck, J.J. Dongarra, G.E. Fagg. G. Al Geist, etc.
HARNESS: A Next Generation Distributed Virtual Machine.
June 24, 1998

[14] Antony Rowstron, Peter Druschel. Pastry: Scalable,
decentralized object location and routing for large-scale peer-
to-peer systems

[15] Condor Project, http://www.cs.wisc.edu/condor/

[16] Bernard Traversat, Mohamed Abdelaziz, Mike Duigou, Jean-
Christophe Hugly, Eric Pouyoul and Bill Yeage, Sun
Microsystems, Inc. Project JXTA Virtual Network. October
28, 2002

[17] Krishna Kant and Ravi Iyer, Enterprise Architecture Lab,
Intel Corporation, OR. A Performance Model for Peer to
Peer File Sharing Services. November 16, 2001

[18] Joseph A. Kaplan, Michael L. Nelson, NASA Langley
Research Center. A Comparison of Queueing, Cluster and
Distributed Computing System. June 1994.

[19] Avaki, http://www.avaki.com

[20] Condor Team, University of Wisconsin-Madison. Condor
Version 6.4.7 Manual.

[21] Patrick Wagstrom. An Overview of Condor. February 19,
2002

[22] Wilmer Caripe, George Cybenko, Katsuhiro Moizumi, and
Robert Gray. Dartmouth College. Network Awareness and
Mobile Agent Systems.

[23] Eric Korpela, Dan Werthimer, David Anderson, Jeff Cobb,
and Matt Lebofsky. SETI@home: Massively Distributed
Computing for SETI

[24] Jerome Verbeke, Neelakanth Nadgir, Greg Ruetsch, Ilya
Sharapov. Framework for Peer-to-Peer Distributed
Computing in a Heterogenous, Decentralized Environment.
Sun Microsystems, Inc.

[25] David Molnar. The SETI@home Problem. ACM Crossroads
Student Magazine. Fall 2000.

[26] The Anthill Project. Department of Computer Science,
University of Bologna.
http://www.cs.unibo.it/projects/anthill

[27] Murali Krishna Ramanathan, Vana Kalogeraki, Jim Pruyne.
Finding Software Technology Laboratory, HP Laboratories
Palo Alto. Good Peers in Peer-to-Peer Networks. HPL-
2001-271. October 23, 2001

[28] John D. Musa, Anthony Iannino and Kazuhira Okumoto.
“Software Reliability: Measurement, Prediction,
Application”. ISBN 0-07-044093-X

[29] R. A. Malaga. Web-based reputation management systems:
Problems and suggested solutions. Electronic Commerce Research,
1(4), 2001.

[30] Chen Wang, Yong Meng Teo. Support parallel computing on
a distributed object architecture. The Journal of System and
Software 565(2001)261-278.

[31] http://bistrica.usask.ca/madmuc

[32] CondorView Pool Statistics, http://pumori.cs.wisc.edu/
condor-view-applet/

[33] Jabber Organization website http://www.jabber.org/

[34] Zoogi website, http://www.zoogi.com

