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ABSTRACT 
A Web service is a collection of functions packaged, published 
and consumed using standard Internet protocols. This paper 
presents a generally applicable architecture for transparent Web 
Service caching, with a focus on Mobile Devices. This approach 
defines a set of required Semantics embodied in a document 
called the ‘Service Semantics Description’ (SSD). The SSD is 
used by the Client-side cache and (optionally) by the intermediate 
Caching Proxy. A tool facilitating definition of semantic tags is 
developed as an IDE extension. Preliminary results are presented 
outlining the feasibility, transparency, general applicability, and 
initial measurements of CPU and Memory overheads. 

1. INTRODUCTION 
Consuming a Web Service is accomplished by sending service 
requests (method calls), the service responds with a method 
return. Requests and responses are couriered as SOAP (Figure 1) 
messages (Simple Object Access Protocol). Accompanying a Web 
Service is the service’s WSDL (Web Service Description 
Language), specifying syntax metadata. An optional layer, the 
Universal Description and Discovery Interface (UDDI) offers a 
directory service for discovery of web services [3, 4, 7, 12]. 

Communication with a Web Service is established using standard 
Internet protocols (e.g. HTTP). HTTP is the protocol underlying 
the World Wide Web. Adoption of Web Services gains 
remarkably from the utilization of well established protocols of 
the heterogeneous network of the WWW [4, 12]. 

A Web Service client must obtain the service’s WSDL document. 
The WSDL document contains syntactic information about the 
service (Namespaces, Method signatures, Data types and a URI). 
A client consumes a web service by initiating the exchange of 
SOAP messages (see Figure 1-A). The messages must follow the 
inscriptions detailed in the WSDL document (URI, Signatures, 
and Data Type information) [4, 12]. 

For a mobile device, consuming a web service is an attractive 
interoperable approach to access remote business logic. Mobile 
devices are constrained by Battery, CPU, Memory and Weak 
Connectivity. Weak Connectivity results from intermittent 
communication due to low bandwidth, high latency or expensive 
networks. Furthermore, Mobile devices are susceptible to both 
voluntary and involuntary disconnections (user initiated 
disconnections vs. disconnections due to a change in the 
availability of a resource, e.g. Battery life). For the mobile user, 
constraining productivity to times of full connectivity hinders a 
successful and usable deployment of remote business logic [1, 7]. 

This paper will refer to a mobile device consuming a Web Service 
(a Web Service Client) as a Mobile Host (MH). A Cache is a 
temporal memory coordinated by a Caching Policy, cache records 
are memorized instances of data (Requests\Responses). A Proxy 
is an entity acting as an intermediate connectivity tunnel, a proxy 
maybe caching (Caching Proxy) [6]. A caching proxy plays an 
intelligent role while tunnelling requests to their respective 
endpoints. Cacheability of a request (method call\return 
cacheability) is the property stating that the request maybe cached 
while maintaining application logic (no negative side effects on 
the application logic) [3, 8]. 

2. PROBLEM DEFINITION 
2.1 Introduction 
Operation of a mobile service client is restricted to times of 
connectivity. The service Provider may suffer network or system 
downtimes. Furthermore, the mobile device is constrained by 
Weak network connectivity. When the mobile client is 
disconnected (null connectivity) the service is inaccessible, and 
the mobile application is unusable. Null connectivity occurs when 
the device is out of network range, or when the device is 
voluntarily or involuntarily disconnected (e.g. user-initiated 
power-off vs. a depleted battery state). Additionally, network 
infrastructures supporting mobility are bandwidth-limited. Clients 
consuming rich services suffer degradation of response times due 
to latencies incurred when sending large upstream requests 
(service arguments) and receiving of large responses (return 
values). 

This paper will explore the issues present when a MH loses 
network connectivity (null connectivity) and the necessary 
recovery logic upon reconnection (reintegration phase). The user 
experience of a mobile device is reflected by the user’s inability to 
continue working while the MH is disconnected. An improvement 
of the user experience can be achieved by enabling the user to 
continue to work while in disconnected mode. Increased 
application response times, due to caching of frequent requests 
and\or Prefetching of anticipated future requests is a desirable 
improvement. 

The mobile application is assumed to be resilient to stale resource 
access (invalid, out of age resources). This implies that the 
application logic is not broken when a request is answered from 
the cache. This is a necessary assumption since the consistency of 
a cached resource cannot be guaranteed while operating in null 
connectivity. 



2.1.1 Web Service Caching 
A Web Service, described by the WSDL document can be viewed 
as a Remote Object, accessible by SOAP messaging over HTTP. 
Methods and properties exposed by the remote object are accessed 
using SOAP messages adhering to the calling convention 
prescribed by the WSDL. Every SOAP request\response 
corresponds to a single method invocation or a single property 
set\get operation [3, 4, 7, 12]. 

A naive caching architecture stores tuples of request\response 
pairs. When a new request is made; and a matching request is in 
the cache, then the corresponding response is returned (cache hit). 
If a similar request is not in the cache (a cache-miss); and the MH 
is operating in disconnected mode; then an exception is raised. All 
attempted requests, while in disconnected mode, are stored in a 
'Pending' FIFO queue for execution when connectivity is restored 
(Reintegration Phase). Upon reconnection, the reintegration phase 
commences by issuing pending requests, an attempt of 
synchronizing the state of the disconnected cache with the state of 
the remote object. 

The relationship between method calls and the state of the service 
is crucial. Service methods fall into one of three types: Read-
methods (state-reading) and Write-methods (state-altering), or 
State-independent methods. Properties offered by the service are 
inherently state-reading and state-altering [3, 8]. The following 
discussion is only concerned with service methods; the outcome 
can be generalized to service Properties. 

The classification of a method as state-reading, state-altering, or 
state-independent is best known by the publisher of the Web 
Service, since services implementations are exposed as black-
boxes. It is impractical to assume that all methods are of one type 
or another (in reference to their state dependency). There is no 
standard for specifying Semantic information about Web Service 
methods. The WSDL document is limited to describing only the 
Syntactic information relating to service consumption [3, 8, 12]. 

A Web Service caching architecture, built specifically for Mobile 
devices must consider the limited processing and space constraints 
available to the mobile device (MH). These constraints limit the 
allowable Cache-size, and the processing requirements of cache 
management and operation [1, 3]. The architecture should 
preserve the logic consistency of the mobile application, a mobile 
application functioning with and without a cache should 
experience no side effects resulting in incorrect operation. Out of 
age cache records should be invalidated. Cross-MH cache 
consistency is a requirement for mission critical mobile 
applications (e.g. shop floor applications) [1, 3, 8]. 

Caching in the area of the World Wide Web is focussed on Read-
caching [5, 6]. Read\Write caching has been well explored in the 
areas of File systems, Databases and Distributed Object Systems 
[2]. Many issues faced by a mobile Web Service client are 
comparable to aspects of caching in the aforementioned 
paradigms. This paper explores previous research in section 3. 

Approaches common to Web caching are severely limited when 
applied to caching of Web Services. Static web pages need only 
Read-caching. Only when a sophisticated web caching system is 
utilized (e.g. Active Caching, for dynamic web content) then a 
form of Write-caching is present [5, 6]. A modified web caching 
proxy may treat the Web Service as a dynamic page and cache the 
SOAP messages that are couriered in the body of HTTP requests. 
Such architecture is very limiting and its assumptions are 
unrealistic. The modified caching proxy must compare bodies of 

SOAP messages when testing for a cache-hit, the message body 
may include metadata that is not necessarily part of the method 
call (e.g. RequestID), resulting in false cache-misses [3]. Another 
problem with such an implementation is the proxy’s inability to 
replay state-altering requests upon restoration of service 
availability. Finally and most importantly, the meaning and 
structure of a web page is fundamentally different from that of a 
web service, the required semantic information enabling caching 
is hardly translatable into the domain of web caching. 

2.1.2 Mobility and User Experience 
A cache for mobile devices must support transparent switching 
between connected mode (remote-execution) and null 
connectivity mode (cache-based execution). 

Furthermore, service methods requiring large arguments incur 
delays due to network transfer latencies. Similar latencies are 
incurred when methods return large dataset are executed. 
Repeated duplicate requests should only be returned from cache 
and bandwidth utilization should be minimized when possible [7, 
8]. 

2.1.3 Caching-Architecture Deployment and Existing 
Web Services 
A caching architecture may require the deployment of specialized 
components on the server-side, a difficult requirement in real-
world scenarios, service Providers are generally reluctant to alter 
existing implementations. An approach to transparency is 
achievable by caching independently of the service 
implementation, utilizing a Caching Proxy [7, 8]. Caching 
schemes employing an intermediate proxy are extensively used 
for caching in the areas of the WWW and Distributed Object 
Systems. An intermediate proxy implementation appears to be the 
service client when viewed by the service provider. When viewed 
from the client’s perspective, the proxy appears as the original 
Web Service. 

2.1.4 Cache Location 
A client-size cache  (see figure 1-B)  permits the client application 
to recover from service requests when the service is unavailable 
(network outage or service downtime). If the client is caching 
independently of the service, unnecessary executions on the server 
if the client issues an expensive request and network connectivity 
is lost before a service response is received. Furthermore, 
notifications of invalidated client-cache records are harder to 
implement since the server is unaware of the client cache. Finally, 
multiple caching clients are not centrally coordinated, the clients 
maybe within range to form an Ad-hoc network and exchange 
cache-hits while the service is unavailable. 

A second cache (see figure 1-C), residing at an intermediate layer 
between the mobile device and the web service is a promising 
approach. The intermediate cache (caching proxy) must not be 
susceptible to network disconnections (see Figure 1). Such an 
organization permits proxy-led coordination of client caches. The 
service is now shielded from processing duplicate requests made 
by multiple mobile devices. A proprietary protocol, optimizing the 
link between the intermediary proxy and the mobile device is now 
possible (e.g. offering compressed streams). Invalidation reports 
are more readily deliverable to mobile clients, as the intermediate 
caching proxy becomes the centralized cache coordination layer. 

 

 



 

2.2 Key Questions 
From the previous discussion, several questions arise: 

1. What metadata is necessary to enable caching of Web 
Services? How can I enable a developer to specify the 
necessary metadata with minimal effort? 

2. What should be cached? 

3. How can a cache that is independent of service 
implementations be implemented? 

4. What consistency guarantees are attainable? 

5. What prompts cache invalidation? What happens in the 
reintegration phase? 

6. How does existing research help in designing a practical 
caching architecture for Web Services? 

 

3. RELATED WORK 
3.1 Web Caching: A Survey of Web Caching 
Schemes for the Internet 
Wang’s paper [5] is a survey of caching architectures on the Web. 
Proxy servers are recognized as an effective solution for 
bandwidth optimization, availability, and scalability. Web Proxy 
servers sit between the web client and the web server, mimicking 
the behavior of the real server. Caching may occur on the server, 
the proxy or the client. A set of significant improvements are 
recognized as following [5]: 

1. Web caching optimizes bandwidth usage by reducing network 
traffic as more and more resources are found in the cache. 

2. Web caching reduces access latency due to the fact that 
documents maybe found in the local cache (on the client) or on 
nearby proxy servers, reducing required network traffic when 
fetching documents. Because of the traffic reduction, more 
bandwidth is available for a cache-miss to be retrieved quickly. 

3. The web server's performance is improved as more requests do 
not reach the server and documents are retrieved from the client or 
proxy caches. 

4. Improved robustness, document availability is significantly 
improved due to replicas existing in local and remote caches. If 
the server goes offline; cached documents are still available to 
interested clients. 

5. Proxy servers act as intermediary traffic deltas, data collection 
and statistical analysis of access patterns is more easily doable. 

6. Load balancing is in effect, as proxy servers reduce the server’s 
utilization by forwarding requests to the least utilized server. 

Wang recognizes disadvantages of web caching, most importantly 
is cache consistency maintenance, as stale records maybe served 
to clients while the server is offline. Increased request overhead, 
due to processing by intermediary proxy (or proxies). A proxy is 
also recognized as a point of failure, the proxy's availability 
becomes more critical than the web server's availability. This is 
because one proxy server may act as a caching agent (delta) for 
multiple web servers [5]. 

Wang outlines ten desirable properties of a web caching 
architecture, namely: Fast Access, Robustness, Transparency, 
Scalability, Efficiency, Adpativity, Stability, Load Balancing, 
Ability to deal with Heterogeneity and Simplicity. A number of 
caching architectures are analyzed including Hierarchical, 
Distributed and Hybrid. Hierarchical caching producing the 
shortest connection latencies when compared to distributed 
caching. On the other hand, distributed caching is found to have 
the shortest retrieval latency but with greater bandwidth utilization 
[5]. 

Two common approaches to cache routing and optimization are 
recognized, by growing a caching distribution tree formed by 
nodes of intermediary proxy servers. Cache resolution is 
performed by a routing table or a hash function [5]. 

Prefetching [9] is needed in order to maximize the cache-hit rate, 
this is done by anticipating future requests and prefetching the 
corresponding documents pre-demand. Prefetching maybe 
executed between the client and the web server, between the client 
and the proxy agent, or between the proxy agent and the web 
server. Caching between the client and the web server is 
recognized for increasing the cache hit-rate by 45% at the cost of 
doubling network traffic. Rate-controlled prefetching is 
recognized as a possible solution to the unacceptable increase of 
network traffic [5]. 

Prefetching between the proxy agent and the web server provides 
significant improvements over the previous approach offering a 
very good predictability of client access patterns at the proxy [5]. 
Furthermore, due to the decreased network traffic downstream to 
the client. Prefetching between clients and proxy agents may best 
support caching for mobility, as the client and the proxy agent 
cooperate to cache and prefetch documents without the server’s 
intervention [5]. 

A number of cache placement and replacement strategies are 
identified and analyzed in regards to cache size\speed. A good 
cache placement\replacement strategy is very important when 
caching for mobility. Two types of cache coherencies are 
recognized, Strong and Weak. Strong cache coherency is 
maintained either by client validation or Server invalidation. The 
former results in higher cache-hit latencies, while the latter 
requires server cooperation. Server cooperation maybe needed for 
broadcasting invalidation reports. Weak coherency is the case 
when cache records are invalidated by a timeout (TTL value). 
Piggyback invalidation requires the server cooperation, by 
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Figure 1: MH - Web Service Connectivity w\out a Cache 

��������	�
��

�������
�  � 
��

� � � � �� ����� �� ��

� � � � �� ����� �� ���� � � �� �� � � �

� � � � �� ����� �� ��

� ���� ��
� �� � � �

�� � � �
� �� � � �



sending lists of invalidated items attached to responses of new 
requests. The requirement for cache coherency depends largely on 
the client's tolerance for stale resources and on the frequency of 
resource changes [5]. 

Proxy placement is very critical for optimal performance gains. 
The desired properties inherit many of the desired properties of a 
web caching system [5]. 

Caching of Dynamic web resources, a topic of interest when 
considering caching of web services is briefly touched upon. 
Read-caching is the focus of the majority of web caching 
strategies and studies [5]. The two widely used approaches to 
dynamic-resource caching are identified as Active Caching and 
Server Accelerators. The former requires computation applets 
attached to dynamic portions of a page to be sent to the proxy and 
the latter is done by exposing a set of caching APIs at the 
accelerator entity, the dynamic resources at the server must utilize 
the APIs in order to achieve caching of dynamic resources [5]. 
Both approaches violate at least two of the desired properties 
outlined at the beginning of the paper, namely the ability to deal 
with heterogeneity and simplicity. 

3.2 Web Service Caching for Mobility 
Terry et al. [3] discuss the need for caching of Web Services to 
support mobility. The motivation is to offer disconnected 
operation of web services. Transparent deployability and General 
applicability are two desired properties of a web service cache. 
The paper distinguishes attributes specific to caching of web 
services, when compared to caching in the areas of file systems, 
and databases as both offering standard interfaces with well 
known semantics (Read\Write and Query\Insert\Update\Delete), 
and Web caching is limited to read caching [3]. 

The authors use the .NET MyServices set of services for an 
experiment in caching for disconnected operation. .NET 
MyServices are services offering personal profile maintenance 
and a contacts directory. The exposed operations are Query, 
Insert, Update and Delete operations [3]. 

The proposed architecture utilizes an intermediate SOAP proxy 
agent, caching SOAP requests\responses made by service clients 
and serving cached responses when the client is in disconnected 
mode. Cached requests are queued up for replay (playback) at the 
reintegration phase [3]. 

Two critical issues surrounding caching of Web Services are 
identified, namely Cacheability\Playback, and cache Consistency 
maintenance. For an effective web service cache, the authors 
identify the requirement that all service operations must be 
designable as Update or Query operations (Read\Write 
semantics). The lack of semantic information in the service 
description (WSDL) creates a challenge for caching consumers of 
boxed web services. Query operations are deemed cacheable if 
they do not alter the server state (e.g. server logs). Update 
operations are operations that are state altering on the server [3]. 

Maintaining strong cache consistency on a mobile client is 
deemed unachievable by the inherent property of weak 
connectivity. Consistency is also explored when execution of an 
operation invalidates a stored response of another. A proposed 
solution is to invalidate the old record, or apply a modification 
transformation for the in-cache record. The authors declare that 
"for preexisting Web services, understanding the correct 
consistency requirements is an extremely challenging issue" [3]. 

The effect of a web service cache on the User experience is 
identified as a crucial criterion when evaluating an effective web 
service cache. Ideally, the user should not be aware of 
disconnections but this is identified as a difficult goal. An 
additionally challenge is the ratio of consistency guarantees 
offered by the cache and the quality of the user experience. 
Altering the client to be cache-aware, and to display hints to the 
user regarding the active consistency guarantees may have a 
positive effect on the user experience [3]. The later proposition 
does not satisfy the property of transparent deployability outlined 
at the beginning of the paper. 

Terry et al. discuss the effect of differing structural formatting of 
SOAP messages on a web service cache. This is identified as a 
possible problem when comparing requests for similarity. WSDL 
is identified as providing enough information for an intermediate 
proxy to fabricate a fake response to a service request. Although 
the lack of a specification mechanism for Default values may limit 
the range of possible fabricated responses [3]. 

Prefetching (hoarding) is identified as a mechanism to maximize 
cache-hit rates. An implementation would employ an algorithm 
for anticipating requests for prefetching. The lack of semantic 
information about the service and the lack of a standard 
mechanism for users to specify a set of requests for hoarding 
complicate a cache implementation supporting prefetching [3]. 

Finally, maintaining application Security is outlined as an 
important consideration. Though is complicated by lack of 
standards regarding authorization of access to a web service 
operation. An intermediary Proxy, caching for multiple clients, 
may open a set of privacy\security holes, this is relevant when 
cached responses differ by the authenticated user [3]. 

3.3 Caching of Objects in Distributed Object 
Middleware (CORBA) for Mobility: Domint 
Distributed object middlewares offer remote method execution, 
platform interoperability, and location-transparency of objects. 
The first two properties offer the closest resemblance of the Web 
Services paradigm. 

Conan et al. [2] describes an architecture offering disconnected 
operation of a CORBA environment for mobile clients. Domint, 
uses portable interceptors (PI), a CORBA mechanism for peaking 
into and altering of the communication between a client and an 
ORB (Object Request Broker). Domint offers continued operation 
in partial and null-connection modes with minimal or no overhead 
when operating in connected mode. 

The transparency of utilizing CORBA's portable interceptors 
enables connection awareness to be shifted away from both the 
client and server objects and into the Domint middleware 
extension. Domint works by intercepting requests made to the 
CORBA ORB and transparently rerouting requests to a local 
disconnected object [2]. 

Several performance protective measures are employed. In order 
"not to punish strongly-connected clients", while strongly 
connected, client’s requests go directly to the remote object [2]. 
Also a hysteresis mechanism is proposed for handling variations 
in connection availability. An interface to the hysteresis 
mechanism maybe consumed by the client application in order to 
alert the user to changes in the connectivity-mode, also offering 
the user the ability to voluntarily disconnect. Three connectivity 
modes are recognized, namely: disconnected, partially connected, 
and connected. Transparent switching between modes is activated 



at the time of a client request. A set of inputs is required when 
deciding on an operation to execute, the inputs are: disconnection 
mode (voluntary or involuntary), the mode of the last request (to 
the same object), the operation name, and the network\object 
current connection mode. A matrix is developed allowing correct 
state transfers in various modes [2]. 

In the connected mode, the requests are immediately sent to the 
remote object. In the partially connected mode; the operation is 
executed both locally and remotely, depending on the call 
semantics (presence of in, out, in\out parameters and if a return 
value is expected). In disconnected mode, operations are executed 
locally, and are logged depending on the semantic relationships 
with other operations. The log is vital at the reintegration phase 
and reconciliation may need to occur to maintain coherency 
between the disconnected object (the proxy) and the remote 
object. However, Domint assumes that no object is accessed by 
more than one disconnected client [2]. 

Preliminary performance evaluations, performed on a Windows 
CE device, show overhead of 14% to 1% when connected, 50% to 
6% when partially connected, and from 20% to 6% when 
disconnected. The incurred computation cost is justified by the 
introduction of transparent connectivity, without modification to 
either the server or the client implementations [2]. 

3.4 Delayed Execution\Call Aggregation: 
Reducing Overhead of .NET Remoting 
In the context of Web Services, .NET Remoting is the 
infrastructure implicitly in-use when .NET applications publish or 
consume Web Services. Remoting abstracts remote objects to 
behave as local objects. The Remoting infrastructure offers 
various extensibility options, the lowest level communication 
channel maybe replaced or customized, the messages to be 
exchanged maybe modified before or after formatting, and calls to 
remote objects maybe intercepted immediately after a consumer 
issues a request and before the request is propagated downwards 
in the remoting stacks. The later is the mechanism commonly 
used in distributed object middlewares. The client accesses the 
remote object via a local proxy, known as the Transparent Proxy 
in .NET Remoting. The transparent proxy is generated at runtime 
by the Real Proxy (also a client-side object). The real proxy is 
generated when remote objects are referenced, and its binary 
maybe replaced or modified without modification to the object 
consumer. 

Clegg [11] discusses the overhead introduced when employing 
.NET Remoting for remote execution. Clegg describes and 
evaluates an architecture that transparently monitors and 
optimizes calls to remote objects. RROpt is modeled on the 
DESORMI framework (Delayed-Evaluation, Self-Optimizing 
Remote Method Invocation by Kelly, Field, Bennett, and Yeung). 
The implementation is a modification to remoting-relevant code in 
the .NET CLI, namely the Mono CLI. Such an implementation 
eliminates the need for server\client modifications [11]. 

PROpt works by checking at runtime for candidate delayed calls, 
specifically by looking for methods of objects inheriting from 
MarshalByRefObject. When a remote call is incurred, it is stored 
in a delayed-list and a dummy return is pushed to the stack. If a 
method attempts to use the return value then the delayed method 
is immediately executed. A set of delayed methods is executed by 
formulating a plan encapsulating their data dependencies and 
forwarding the plan to the server. PROpt assumes that all servers 
are PROpt-enabled (executing on top of Mono CLI with PROpt 

extensions). Argument aggregation is also performed when a set 
of methods share an argument [11].  

Another optimization employed by PROpt is Plan caching, sets of 
previously executed aggregated-calls (a plan) are remembered on 
the server, a client refers to them by ID, furthermore decreasing 
network traffic requirements [11].  

The remoting infrastructure protects applications by containing 
them in “Application Domains” (light weight processes). Multiple 
client accessing the same remote object are not aware of each 
other, multiple application domains may be hosted within one 
process. Furthermore, multiple remote objects on a single remote 
server maybe accessed by a set of application domains in a 
process. In order to aggregate cross-object, PROpt implements its 
aggregation targets per server name [11]. 

The speedup possible by PROpt did not prove to be consistent. 
PROpt performed well when data dependencies between methods 
existed. Outbound Network traffic is significantly decreased due 
to call\parameter aggregation. PROpt optimizations failed to 
materialize when no data dependencies exist between method 
calls, this is the case when the network infrastructure is fast [11]. 
No applicability to mobile clients is considered. 

4. A WEB SERVICE CACHE 

4.1 General Considerations 
An architecture supporting a predefined set of services and a 
special client implementation is an application-specific cache. An 
application-specific cache is optimized for the application logic, 
all caching decisions (such as placement, replacement, 
prefetching) target optimal consistency and performance of the 
application. Proprietary communication protocols (such as ones 
supporting compression, or multicast notification of cache 
invalidation) are expected, as the application permits [3, 8]. 

A General caching architecture, on the other hand, offers a cache 
to any Web service. Such architecture faces many challenges, 
most importantly is the decision of cacheability of a web service 
request. A Web service is treated as a black box, requiring the 
availability of cache-hints (metadata) supporting decisions such as 
cacheability, invalidation conditions, and default responses (return 
values) [3]. 

A caching proxy is necessary in a general cache, in order to 
support independent caching decisions (independent of the client 
and the server). On the other hand, an application-specific 
implementation maybe embedded in the web service and client 
implementations. 

When the goal of a cache is to improve the availability of a web 
service, then a larger Cache-size and optimal placement and 
replacement strategies are a priority. The existence of stale-
resources (invalid cache records) in the cache is permitted, hence 
to improve the service's availability. Knowledge of the MH 
connection-state is necessary, in order to seamlessly resume 
returning of cached responses when the MH enters null 
connectivity. Cached responses are returned only when the MH 
enters null connectivity, in order to achieve the best-possible 
cache consistency. Newer requests overwrite their older 
counterparts in the cache. 

On the other hand, when the goal of caching is to improve the 
application's performance, then cached responses can be returned 
even when the MH is in full connectivity mode. Such an approach 
may result in substantial response-time improvements, especially 



for expensive web service methods: methods requiring a relatively 
large set of arguments, methods requiring an expensive or lengthy 
computation, and methods returning a sizable data object. Web 
service requests maybe aggregated to improve bandwidth 
utilization while returning cached responses. The downside to 
such performance optimizations is decreased cache consistency in 
relation to the real web service. A workaround to further improve 
the consistency of cached responses maybe achieved by 
periodically prefetching, or periodically submitting invalidation-
queries of expensive cached responses. 

4.2 Cache Location 
A server-side cache offloads the server from re-computation of 
frequent requests. Such a cache implementation is commonly a 
specialized architecture. Cache-consistency is best obtained when 
using this approach, since invalidation reports maybe requested or 
broadcasted to the known caching proxy (or proxies). Another 
improvement is the transparency of the cache for a MH 
consuming the web service. A slight improvement in service 
availability is present due to a protection from server downtimes, 
as the server-side cache continues operation while the server is 
down. On the other hand, a MH suffering local null connectivity 
is also disconnected from the server-side cache.  

A client-side cache offers the service's availability to the MH 
while in null connectivity [10]. Cache-consistency is minimally 
maintained in this approach. Near-time cache invalidation is 
harder to achieve since the MH cache is independent of the 
service implementation [3, 8]. 

An intermediate caching proxy offers transparent service caching 
for a MH. A caching proxy is more capable of tracking the list of 
caching MHs as it act as an intermediate delta between multiple 
MHs and multiple service providers. A shared cache is in effect, 
as requests from multiple MHs are cached for other MHs. An 
intermediate cache is best equipped, independently of the service 
provider, to deliver invalidation reports to the tracked list of MHs. 
The service remains unavailable to a MH in null connectivity, as 
the intermediate cache becomes disconnected. 

A client-side cache assisted by a caching proxy is best equipped 
when the goal is protect the client from service unavailability 
while maintaining best-possible cache consistency. Several 
performance improvements are now possible because the client-
side cache and the intermediate caching proxy can agree on a 
proprietary communication protocol supporting better request 
aggregation and near-time broadcasts of cache invalidation 
reports. 

4.3 Semantic Metadata 
The lack of semantic metadata f a web service methods presents a 
challenge for caching independently of the service 
implementation [3, 8]. The metadata may accompany the service 
as an extension to the service's WSDL document, or maybe 
maintained by a third party maintaining a repository of metadata 
records targeting a growing set of a web services. An alternative is 
to allow the service consumer to specify an updatable set of meta 
tags, assisting caching decisions when determining cacheability 
and invalidation conditions. Client maintained metadata are 
specified per web service. 

A web service method should be tagged if it is cacheable, and a 
default return value should be specified. The former aids the 
cacheability decision of the cache, while the latter offers a 
protection against cache-missed of a MH in null connectivity. 

Additional tags may outline invalidation conditions based on 
time-values, age-thresholds. Method interdependencies will aid 
request-aggregation logic and can also provide further 
improvement when maintaining cache consistency by invalidating 
cached responses when state-modifying requests are executed. 

4.4 Caching Policy 
The request signature and argument values must be considered in 
hash function supporting cache placement of web service 
responses. Since multiple requests to the same method may differ 
on a single argument, while unique responses are always returned. 

LRU, LFU and Size are competing replacement strategies when a 
decision relates to limiting the cache size, especially for a MH 
with space and computation constraints [7]. It is to be determined 
if any or a combination of the well studied replacement strategies 
are best suited for a web service cache supporting mobile devices. 

A cached response maybe invalidated by its age or a timeout 
value. Furthermore, a cached resource maybe invalidated and 
evicted from the cache because an invalidating request was 
submitted. 

Cache invalidation reports maybe broadcasted by the server or an 
intermediate proxy, or maybe piggybacked on the results of new 
requests. Furthermore, invalidation query maybe submitted on 
intervals or piggybacked on new requests. Limitations are present 
depending on the cache location and the number of entities 
supporting caching between the MH and the service provider [3, 
8, 10]. 

Default return values are useful on a cold-start or when a cache-
miss occurs while the MH is in null connectivity mode. 

An alternative for recovery from a cache-miss when the original 
service is down while the MH is fully connected is by rerouting of 
requests to a service replica. This approach further protects the 
MH from service unavailability due to provider downtimes or 
peak hour unavailability. 

The consistency of responses between the service replica and the 
original provider is an issue out of context for this research. 

4.5 Prefetching\Hoarding 
On a cold start, a MH may issue a set of predefined requests for 
caching. Alternatively, the service provider or an intermediate 
cache maybe store an up-to-date image of most frequently 
requests methods and push them to the client on a cold start. 

Prefetching offers substantial improvements in response times to 
most frequently requested methods, at the expense of higher 
bandwidth utilization. The negative side effects of prefetching 
maybe overcame by request-aggregation and by adaptive 
prefetching logic with explicit awareness of network QoS [9]. 

4.6 Client Sessions 
A MH utilizing a communication channel supporting session state 
can benefit from an intermediate cache retaining a MH-tailored 
list of frequent requests. Prefetch or hoarding requests can be 
initiated on the behalf of the MH. 

For a frequently disconnecting MH, expensive requests made 
while in full connectivity maybe pushed upon reintegration. The 
minimum improvement is in effect when a cache-refresh cycle (or 
a cache-replacement function) is executed and an expensive 
request is not evicted because the owner MH connectivity is 
considered. 



5. PROPOSED ARCHITECTURE 
The design of the proposed architecture is modelled to support the 
following two scenarios and their consequences: 

1. Null Connectivity: The MH enters null connectivity, on a 
new request the following conditions are evaluated: 

A] Cache-hit, the cached response is returned. A state-
altering request is queued into the Replay queue. State-
reading requests are queued into a Delayed-fetch queue, a 
mechanism for improving cache consistency at the 
reintegration phase. 

B] Cache-miss (Cold Start), a default return-value is 
returned. A state-altering request is queued in the Replay 
queue. A state-reading request is queued for delayed fetch. 

2. Full Connectivity: The MH enters full connectivity, the 
following conditions are evaluated: 

Non-empty Cache: 
A] Cache Miss: 
New requests go directly to the Web Service, and when a 
response is received; a request\response tuple is inserted into 
the cache. 

B] Cache Hit: State-altering requests are sent directly to the 
service, a request\response tuple is cached. A response to a 
state-reading request is returned from cache (if the response 
is valid or if the request is long-living), the state-reading 
request is queued for delayed-fetch, a mechanism for 
improving cache consistency in the long-run. A long-living 
request is a request with a long cache TTL or the time (t) of 
the cached response is less than the invalidation time (On 
Time) of the method. 

Empty Cache (Cold Start): 
A] On start, if an intermediate proxy exist, request a cache 
Image, Done. 

B] On start, if a Prefetch-list is known, queue all items from 
the list into the Delayed-fetch queue, Done. 

C] On a new Request and a Cache Miss: Return the default 
return-value associated with the request and queue state-
altering requests into the Replay queue. State-reading 
requests are queued for delayed-fetch. 

For effective caching of the Web Service this approach uses a 
document encapsulating the Semantics of the Web Service. The 
encapsulated semantics are shareable, and are either defined by 
the service Consumer (at development time) or by the service 
Provider. This paper refers to the document encapsulating the 
service semantics as the Service Semantics Description Document 
(SSD Document), an XML document. The SSD also specifies 
Hints aiding various cache operations (Invalidation Conditions, 
Prefetch Lists, and addresses of a Replica and Intermediate 
Proxy). 

A developer tool that integrates within the IDE of Microsoft 
Visual Studio.NET is provided to aid a mobile application 
developer to seamlessly specify an SSD. A similar tool is also 
provided for a Web Service developer in order to specify an SSD. 
The developer tool allows transparent incorporation of a cached 
Web Service while decoupling the programmer from the caching 
infrastructure. 

The Service Semantics Description document specifies the 
following metadata regarding each service Method: 

1] Cacheability: specifying if a method should be cached or not. A 
method is non-cacheable if a cached value will always lead to 
faulty application logic (e.g. a GetLastRequest method). 

2] Replay: upon reconnection, this tag hints if a method should be 
replayed or not. To maintain application logic, a State-altering 
method should be tagged for ‘Replay’. A method may not be 
tagged for replay because of one of two reason; either the method 
is state-reading or the method’s state-altering behaviour is 
irrelevant upon reconnection. 

3] Default Return Values: the value of this tag is a serialized-
graph of a meaningful default return value for a method. This tag 
enables the MH to partially recover from a Cache-Miss while in 
full connectivity, or when a MH cold starts. It is expected that 
only cacheable (state-reading) methods will have default return 
values. State-altering methods can not have default return values 
as this may lead to illogical returns (e.g. a Bool CreateRecord() 
method, returning success or failure of record creation). 

4] Invalidation Conditions: a cached response should be 
invalidated after a specified Age (in minutes), or after a certain 
time of day, or when an invalidating hint is received (or fetched), 
the latter is not implemented. 

5] Method Interdependencies: for N methods, this is an N x N 
table specifying interdependencies between service methods. 
Effective Request-aggregation can only be implemented if method 
interdependencies are known, the current prototype does not 
implement request-aggregation. A cached response is invalidated 
if a state-altering request, that is also a dependency of the cached 
response, is submitted. A table lookup is used to invalidate a 
cached response. 

6] Prefetch Parameters: a list of method names and proper 
arguments is specified to enable prefetching on a cold start or at 
periodic intervals. 

7] Intermediate Cache Proxy: a URI specifying the network path 
to an intermediate Caching Proxy, the caching proxy interface 
appears as a replica of the original Web Service. 

8] Service Replica: a URI specifying the network path of service 
Replica. A Replica is utilized when a service downtime is 
detected. 

The implementation of the Cache is built as a Proxy of the Web 
Service, the Proxy exposes an interface identical to the real 
service, decoupling the service consumer and service provider 
from the cache. The Proxy implementation is essentially a 
disconnected Object providing transparent access to the real 
service while continuously monitoring service availability and 
network connectivity of the MH. This object is referred to as the 
Caching Web Service Object (CWSO). 

The CWSO implements a Hashtable for storing tuples of 
request\response pairs. A connectivity monitor detects service 
availability by requesting the service’s WSDL at predefined 
intervals (5minutes). The connectivity monitor has OS hooks to 
detect network connectivity at the MH, entering the CWSO into 
one of two states; Full Connectivity and Null Connectivity. A 
Replay FIFO queue and a Delayed-fetch FIFO queue are used for 



queuing state-altering requests (the former) and queuing of 
prefetch-requests (or delayed-fetch requests). 

The SSD document is stored as an XML file accompanying the 
Real Proxy assembly. The CWSO provides an interface for 
consumers wishing to alter the service semantics or the default 
caching policy at runtime. 

The Cache hashtable contains wrapped IMessage objects 
(CacheEntry). An IMessage object specifies the method’s 
signature, argument list, call context, and method’s response. The 
CacheEntry object includes the request time and time of the last 
cache-hit, along with the object’s size in bytes. 

The Cache Manager executes at state transitions (Full 
Connectivity and Null Connectivity) and appropriate action is 
taken. The Replay queue is processed before processing of the 
Delayed-fetch queue, to allow state changes to occur before 
processing of new state-reading operations. The processing of the 
Replay queue is started at a random interval between 1-5 minutes 
after achieving full connectivity. On a Cold-start, the replay-queue 
is empty and processing commences with the delayed-fetch queue 
instead. 

The Intermediate Caching Proxy (ICP) hosts an exact copy of the 
MH’s CWSO, plus an additional connectivity monitor targeting 
MHs. Connectivity session management between the ICP CWSO 
and the MH’s CWSO is planned as future work. 

The link between the MH and the ICP is a wireless link 
susceptible to disconnection and low QoS (factors of weak 
connectivity), SOAP communication is tunnelled over a 
‘customizable’ HTTP channel (e.g. Compressed). The link 
between the ICP and the real Web Service is assumed to be a 
wired link, offering higher bandwidth and strong connectivity, the 
communication is couriered by standard HTTP. 

When the MH’s CWSO is accessing either the real Web Service 
or the ICP; the logic is consistent. A replica Web Service appears 
to be the real Web Service to both the CWSO and the ICP. The 
MH or the ICP both appear as simple clients to either the Web 
Service or the Replica. 

If a Service Connectivity Manager detects a service downtime 
(failure to return a WSDL document), requests are transparently 
routed to a Replica (if exist) or the Cache. If the connectivity 
manager detects null connectivity at the MH, then the ICP, the 
real Web Service and the Replica are all disconnected, and all 
requests are routed to the local Cache. 

Cached responses are invalidated by Age or Time (from the SSD), 
the detection of an invalid CacheEntry happens when a cache-hit 
is suspected or when the CWSO executes the cache’s 
SizeManager (every 20mins). CacheEntry objects maybe evicted 
from the cache if the cache-size exceeds a threshold (predefined 
as 10mb), the eviction strategy maybe LRU or SIZE. 
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6. PRELIMINARY EVALUATION 
6.1 Experimentation Plan 
Two experiments have been performed, the first experiment 
measures the Overhead introduced by CWSO on the MH. The 
second experiment captures the State Transitions when controlling 
factors are toggled. 

The scenarios are controlled by the following factors: 

• Network Connectivity: Connected and Not Connected 

• Service: Available and Unavailable 

• Request: State-reading R, State-altering W 

• Cache Test: Hit or Miss 

The service provider in the Experiment 1 is on the same host as 
the emulated MH. This decision was made to eliminate network 
latencies from the experimental results. All performance data in 
this experiment is collected at the local MH. 

The service provider in the Experiment 2 is a remote host. The 
collected performance data is local to the MH. 

A mobile network was not utilized in these experiments, this 
should not skew the result sets since this implementation does not 
introduce additional communication. 

The link between the ICP and MH’s CWSO is a standard HTTP 
stream, SOAP Compression is not yet implemented. 

Cooperative Caching and Prefetching has not been tested. 

Network, Service, Replica and ICP availability is simulated by 
object parameters. 

The active replacement policy is LRU. 

6.2 Test Suit 
6.2.1 Hypothetical Web Service (HWS) 
The service exposes 4 methods, R denotes a State-reading 
method, W denotes a State-altering (write) method: 

OUT R_1() consistently returns a constant value. 

OUT R_2(in) is a function of in. 

OUT W_1(in) is state-altering returning success\failure. 

VOID W_2(in) is state-altering without return. 

The ‘in’ argument to method R_2 is an Integer, W_1 and W_2 
‘in’ arguments are of type String, the String arguments vary 
randomly in size between 100bytes and 1kb. 

The return value of R_1 is a String, R_2 is an Integer and W_1 is 
Boolean. 

The associated SSD is available in [13]. 

The goals of this experiment is to test processing overhead (CPU) 
and cache-size overhead (Memory) at the MH’s CWSO when 
1000 requests are sequentially executed. 

To calculate CPU and Memory overheads, the experiment is run 
twice, for each method. The first run is performed without the 
CWSO, the second run is with the CWSO. CWSO initialization 
times are accounted for. 

6.2.2 I-Help Web Services 
I-Help is a real-world public discussion forum system, utilized 
mainly by Computer Science students at our department. Actual 
User Traces were not collected for this experiment, instead the 

goal of this experiment is to verify the architecture’s general 
applicability to existing Web Services and secondly to verify the 
system’s State Transitions when controlling factors are toggled. 

I-Help Web Services exposes two operations of interest, a Query 
operation and a Post operation, the associated SSD document is 
available in [13]. 

6.3 Experimental Conditions 
Mobile Application: Proof of Concept Client 

MH: Emulator Windows CE.NET 4.2. 

Experiment 1 Service Provider: .NET Assembly 

Experiment 2 Service Provider, 3rd-party implementation: Axis, 
Java Web Services 

6.4 Preliminary Results 
6.4.1 Experiment 1: Overhead 
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6.4.2 Experiment 2: State Transitions 
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6.5 Summary of Results 
The results show that the CPU overhead at the MH, expended in 
the Real Proxy object by the components: Service Connectivity 
Monitor, Cache-Hit Test, Cache-Size manager and the Queues, 
did not rise above 10%, as a preliminary result this is acceptable. 

The SSD’s description of W_1 as non-cacheable successfully 
resulted in a Cache-size of 0bytes. W_2, marked with a VOID 
return resulted in a similar outcome. R_1 returning a constant 
occupied 45kb in the Cache, a value indicative of the size of 
initial CacheEntry object, Hashtable initialization along with a set 
of data owned by the .NET Framework’s memory management. 
On R_2 execution, cache-size grew rapidly as random ‘in’ 
arguments were sent with every new request, the cache-size 
capped at 10mb, the predefined maximum allowable cache-size, 
future requests replaced in-cache entries by the LRU strategy. 

The CWSO State changes match expectations. The detected States 
match the architecture’s logical design. This experiment utilized a 

real-world Web Service, demonstrating general applicability of 
the architecture. 

7. FUTURE WORK 
Embed the Service Semantics Description within the service's 
WSDL, this maybe done by utilizing WSDL Extensibility via 
attributes and element extensions. Merging the syntactic 
description (WSDL) with the semantic description (SSD) is very 
valuable, revoking the need for a separate SSD document and 
enabling smoother integration and richer discovery of Web 
Services. 

8. CONCLUSION 
This paper presented a generally applicable, connectivity-aware, 
and a transparent approach to caching of Web Services. A set of 
semantic tags have been identified as a prerequisite for effective 
web service caching. The Service Semantic Description document 
was developed, along with a tool enabling SSD-specification from 
within a widely used developer IDE. Preliminary evaluations of 
the architecture demonstrated general applicability, transparent 
operation and low resource overhead. 
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