
Transparent Caching of Web Services for Mobile Devices
Kamal Elbashir

Multi-Agent Distributed Mobile and
Ubiquitous Computing Laboratory

Computer Science Department
University of Saskatchewan

(306) 966-4744

kae501@cs.usask.ca

ABSTRACT
A Web service is a collection of functions packaged, published
and consumed using standard Internet protocols. This paper
presents a generally applicable architecture for transparent Web
Service caching, with a focus on Mobile Devices. This approach
defines a set of required Semantics embodied in a document
called the ‘Service Semantics Description’ (SSD). The SSD is
used by the Client-side cache and (optionally) by the intermediate
Caching Proxy. A tool facilitating definition of semantic tags is
developed as an IDE extension. Preliminary results are presented
outlining the feasibility, transparency, general applicability, and
initial measurements of CPU and Memory overheads.

1. INTRODUCTION
Consuming a Web Service is accomplished by sending service
requests (method calls), the service responds with a method
return. Requests and responses are couriered as SOAP (Figure 1)
messages (Simple Object Access Protocol). Accompanying a Web
Service is the service’s WSDL (Web Service Description
Language), specifying syntax metadata. An optional layer, the
Universal Description and Discovery Interface (UDDI) offers a
directory service for discovery of web services [3, 4, 7, 12].

Communication with a Web Service is established using standard
Internet protocols (e.g. HTTP). HTTP is the protocol underlying
the World Wide Web. Adoption of Web Services gains
remarkably from the utilization of well established protocols of
the heterogeneous network of the WWW [4, 12].

A Web Service client must obtain the service’s WSDL document.
The WSDL document contains syntactic information about the
service (Namespaces, Method signatures, Data types and a URI).
A client consumes a web service by initiating the exchange of
SOAP messages (see Figure 1-A). The messages must follow the
inscriptions detailed in the WSDL document (URI, Signatures,
and Data Type information) [4, 12].

For a mobile device, consuming a web service is an attractive
interoperable approach to access remote business logic. Mobile
devices are constrained by Battery, CPU, Memory and Weak
Connectivity. Weak Connectivity results from intermittent
communication due to low bandwidth, high latency or expensive
networks. Furthermore, Mobile devices are susceptible to both
voluntary and involuntary disconnections (user initiated
disconnections vs. disconnections due to a change in the
availability of a resource, e.g. Battery life). For the mobile user,
constraining productivity to times of full connectivity hinders a
successful and usable deployment of remote business logic [1, 7].

This paper will refer to a mobile device consuming a Web Service
(a Web Service Client) as a Mobile Host (MH). A Cache is a
temporal memory coordinated by a Caching Policy, cache records
are memorized instances of data (Requests\Responses). A Proxy
is an entity acting as an intermediate connectivity tunnel, a proxy
maybe caching (Caching Proxy) [6]. A caching proxy plays an
intelligent role while tunnelling requests to their respective
endpoints. Cacheability of a request (method call\return
cacheability) is the property stating that the request maybe cached
while maintaining application logic (no negative side effects on
the application logic) [3, 8].

2. PROBLEM DEFINITION
2.1 Introduction
Operation of a mobile service client is restricted to times of
connectivity. The service Provider may suffer network or system
downtimes. Furthermore, the mobile device is constrained by
Weak network connectivity. When the mobile client is
disconnected (null connectivity) the service is inaccessible, and
the mobile application is unusable. Null connectivity occurs when
the device is out of network range, or when the device is
voluntarily or involuntarily disconnected (e.g. user-initiated
power-off vs. a depleted battery state). Additionally, network
infrastructures supporting mobility are bandwidth-limited. Clients
consuming rich services suffer degradation of response times due
to latencies incurred when sending large upstream requests
(service arguments) and receiving of large responses (return
values).

This paper will explore the issues present when a MH loses
network connectivity (null connectivity) and the necessary
recovery logic upon reconnection (reintegration phase). The user
experience of a mobile device is reflected by the user’s inability to
continue working while the MH is disconnected. An improvement
of the user experience can be achieved by enabling the user to
continue to work while in disconnected mode. Increased
application response times, due to caching of frequent requests
and\or Prefetching of anticipated future requests is a desirable
improvement.

The mobile application is assumed to be resilient to stale resource
access (invalid, out of age resources). This implies that the
application logic is not broken when a request is answered from
the cache. This is a necessary assumption since the consistency of
a cached resource cannot be guaranteed while operating in null
connectivity.

2.1.1 Web Service Caching
A Web Service, described by the WSDL document can be viewed
as a Remote Object, accessible by SOAP messaging over HTTP.
Methods and properties exposed by the remote object are accessed
using SOAP messages adhering to the calling convention
prescribed by the WSDL. Every SOAP request\response
corresponds to a single method invocation or a single property
set\get operation [3, 4, 7, 12].

A naive caching architecture stores tuples of request\response
pairs. When a new request is made; and a matching request is in
the cache, then the corresponding response is returned (cache hit).
If a similar request is not in the cache (a cache-miss); and the MH
is operating in disconnected mode; then an exception is raised. All
attempted requests, while in disconnected mode, are stored in a
'Pending' FIFO queue for execution when connectivity is restored
(Reintegration Phase). Upon reconnection, the reintegration phase
commences by issuing pending requests, an attempt of
synchronizing the state of the disconnected cache with the state of
the remote object.

The relationship between method calls and the state of the service
is crucial. Service methods fall into one of three types: Read-
methods (state-reading) and Write-methods (state-altering), or
State-independent methods. Properties offered by the service are
inherently state-reading and state-altering [3, 8]. The following
discussion is only concerned with service methods; the outcome
can be generalized to service Properties.

The classification of a method as state-reading, state-altering, or
state-independent is best known by the publisher of the Web
Service, since services implementations are exposed as black-
boxes. It is impractical to assume that all methods are of one type
or another (in reference to their state dependency). There is no
standard for specifying Semantic information about Web Service
methods. The WSDL document is limited to describing only the
Syntactic information relating to service consumption [3, 8, 12].

A Web Service caching architecture, built specifically for Mobile
devices must consider the limited processing and space constraints
available to the mobile device (MH). These constraints limit the
allowable Cache-size, and the processing requirements of cache
management and operation [1, 3]. The architecture should
preserve the logic consistency of the mobile application, a mobile
application functioning with and without a cache should
experience no side effects resulting in incorrect operation. Out of
age cache records should be invalidated. Cross-MH cache
consistency is a requirement for mission critical mobile
applications (e.g. shop floor applications) [1, 3, 8].

Caching in the area of the World Wide Web is focussed on Read-
caching [5, 6]. Read\Write caching has been well explored in the
areas of File systems, Databases and Distributed Object Systems
[2]. Many issues faced by a mobile Web Service client are
comparable to aspects of caching in the aforementioned
paradigms. This paper explores previous research in section 3.

Approaches common to Web caching are severely limited when
applied to caching of Web Services. Static web pages need only
Read-caching. Only when a sophisticated web caching system is
utilized (e.g. Active Caching, for dynamic web content) then a
form of Write-caching is present [5, 6]. A modified web caching
proxy may treat the Web Service as a dynamic page and cache the
SOAP messages that are couriered in the body of HTTP requests.
Such architecture is very limiting and its assumptions are
unrealistic. The modified caching proxy must compare bodies of

SOAP messages when testing for a cache-hit, the message body
may include metadata that is not necessarily part of the method
call (e.g. RequestID), resulting in false cache-misses [3]. Another
problem with such an implementation is the proxy’s inability to
replay state-altering requests upon restoration of service
availability. Finally and most importantly, the meaning and
structure of a web page is fundamentally different from that of a
web service, the required semantic information enabling caching
is hardly translatable into the domain of web caching.

2.1.2 Mobility and User Experience
A cache for mobile devices must support transparent switching
between connected mode (remote-execution) and null
connectivity mode (cache-based execution).

Furthermore, service methods requiring large arguments incur
delays due to network transfer latencies. Similar latencies are
incurred when methods return large dataset are executed.
Repeated duplicate requests should only be returned from cache
and bandwidth utilization should be minimized when possible [7,
8].

2.1.3 Caching-Architecture Deployment and Existing
Web Services
A caching architecture may require the deployment of specialized
components on the server-side, a difficult requirement in real-
world scenarios, service Providers are generally reluctant to alter
existing implementations. An approach to transparency is
achievable by caching independently of the service
implementation, utilizing a Caching Proxy [7, 8]. Caching
schemes employing an intermediate proxy are extensively used
for caching in the areas of the WWW and Distributed Object
Systems. An intermediate proxy implementation appears to be the
service client when viewed by the service provider. When viewed
from the client’s perspective, the proxy appears as the original
Web Service.

2.1.4 Cache Location
A client-size cache (see figure 1-B) permits the client application
to recover from service requests when the service is unavailable
(network outage or service downtime). If the client is caching
independently of the service, unnecessary executions on the server
if the client issues an expensive request and network connectivity
is lost before a service response is received. Furthermore,
notifications of invalidated client-cache records are harder to
implement since the server is unaware of the client cache. Finally,
multiple caching clients are not centrally coordinated, the clients
maybe within range to form an Ad-hoc network and exchange
cache-hits while the service is unavailable.

A second cache (see figure 1-C), residing at an intermediate layer
between the mobile device and the web service is a promising
approach. The intermediate cache (caching proxy) must not be
susceptible to network disconnections (see Figure 1). Such an
organization permits proxy-led coordination of client caches. The
service is now shielded from processing duplicate requests made
by multiple mobile devices. A proprietary protocol, optimizing the
link between the intermediary proxy and the mobile device is now
possible (e.g. offering compressed streams). Invalidation reports
are more readily deliverable to mobile clients, as the intermediate
caching proxy becomes the centralized cache coordination layer.

2.2 Key Questions
From the previous discussion, several questions arise:

1. What metadata is necessary to enable caching of Web
Services? How can I enable a developer to specify the
necessary metadata with minimal effort?

2. What should be cached?

3. How can a cache that is independent of service
implementations be implemented?

4. What consistency guarantees are attainable?

5. What prompts cache invalidation? What happens in the
reintegration phase?

6. How does existing research help in designing a practical
caching architecture for Web Services?

3. RELATED WORK
3.1 Web Caching: A Survey of Web Caching
Schemes for the Internet
Wang’s paper [5] is a survey of caching architectures on the Web.
Proxy servers are recognized as an effective solution for
bandwidth optimization, availability, and scalability. Web Proxy
servers sit between the web client and the web server, mimicking
the behavior of the real server. Caching may occur on the server,
the proxy or the client. A set of significant improvements are
recognized as following [5]:

1. Web caching optimizes bandwidth usage by reducing network
traffic as more and more resources are found in the cache.

2. Web caching reduces access latency due to the fact that
documents maybe found in the local cache (on the client) or on
nearby proxy servers, reducing required network traffic when
fetching documents. Because of the traffic reduction, more
bandwidth is available for a cache-miss to be retrieved quickly.

3. The web server's performance is improved as more requests do
not reach the server and documents are retrieved from the client or
proxy caches.

4. Improved robustness, document availability is significantly
improved due to replicas existing in local and remote caches. If
the server goes offline; cached documents are still available to
interested clients.

5. Proxy servers act as intermediary traffic deltas, data collection
and statistical analysis of access patterns is more easily doable.

6. Load balancing is in effect, as proxy servers reduce the server’s
utilization by forwarding requests to the least utilized server.

Wang recognizes disadvantages of web caching, most importantly
is cache consistency maintenance, as stale records maybe served
to clients while the server is offline. Increased request overhead,
due to processing by intermediary proxy (or proxies). A proxy is
also recognized as a point of failure, the proxy's availability
becomes more critical than the web server's availability. This is
because one proxy server may act as a caching agent (delta) for
multiple web servers [5].

Wang outlines ten desirable properties of a web caching
architecture, namely: Fast Access, Robustness, Transparency,
Scalability, Efficiency, Adpativity, Stability, Load Balancing,
Ability to deal with Heterogeneity and Simplicity. A number of
caching architectures are analyzed including Hierarchical,
Distributed and Hybrid. Hierarchical caching producing the
shortest connection latencies when compared to distributed
caching. On the other hand, distributed caching is found to have
the shortest retrieval latency but with greater bandwidth utilization
[5].

Two common approaches to cache routing and optimization are
recognized, by growing a caching distribution tree formed by
nodes of intermediary proxy servers. Cache resolution is
performed by a routing table or a hash function [5].

Prefetching [9] is needed in order to maximize the cache-hit rate,
this is done by anticipating future requests and prefetching the
corresponding documents pre-demand. Prefetching maybe
executed between the client and the web server, between the client
and the proxy agent, or between the proxy agent and the web
server. Caching between the client and the web server is
recognized for increasing the cache hit-rate by 45% at the cost of
doubling network traffic. Rate-controlled prefetching is
recognized as a possible solution to the unacceptable increase of
network traffic [5].

Prefetching between the proxy agent and the web server provides
significant improvements over the previous approach offering a
very good predictability of client access patterns at the proxy [5].
Furthermore, due to the decreased network traffic downstream to
the client. Prefetching between clients and proxy agents may best
support caching for mobility, as the client and the proxy agent
cooperate to cache and prefetch documents without the server’s
intervention [5].

A number of cache placement and replacement strategies are
identified and analyzed in regards to cache size\speed. A good
cache placement\replacement strategy is very important when
caching for mobility. Two types of cache coherencies are
recognized, Strong and Weak. Strong cache coherency is
maintained either by client validation or Server invalidation. The
former results in higher cache-hit latencies, while the latter
requires server cooperation. Server cooperation maybe needed for
broadcasting invalidation reports. Weak coherency is the case
when cache records are invalidated by a timeout (TTL value).
Piggyback invalidation requires the server cooperation, by

A

B

C

Figure 1: MH - Web Service Connectivity w\out a Cache

��������	�
��

�������
� �
��

� � � � �� ����� �� ��

� � � � �� ����� �� ���� � � �� �� � � �

� � � � �� ����� �� ��

� ���� ��
� �� � � �

�� � � �
� �� � � �

sending lists of invalidated items attached to responses of new
requests. The requirement for cache coherency depends largely on
the client's tolerance for stale resources and on the frequency of
resource changes [5].

Proxy placement is very critical for optimal performance gains.
The desired properties inherit many of the desired properties of a
web caching system [5].

Caching of Dynamic web resources, a topic of interest when
considering caching of web services is briefly touched upon.
Read-caching is the focus of the majority of web caching
strategies and studies [5]. The two widely used approaches to
dynamic-resource caching are identified as Active Caching and
Server Accelerators. The former requires computation applets
attached to dynamic portions of a page to be sent to the proxy and
the latter is done by exposing a set of caching APIs at the
accelerator entity, the dynamic resources at the server must utilize
the APIs in order to achieve caching of dynamic resources [5].
Both approaches violate at least two of the desired properties
outlined at the beginning of the paper, namely the ability to deal
with heterogeneity and simplicity.

3.2 Web Service Caching for Mobility
Terry et al. [3] discuss the need for caching of Web Services to
support mobility. The motivation is to offer disconnected
operation of web services. Transparent deployability and General
applicability are two desired properties of a web service cache.
The paper distinguishes attributes specific to caching of web
services, when compared to caching in the areas of file systems,
and databases as both offering standard interfaces with well
known semantics (Read\Write and Query\Insert\Update\Delete),
and Web caching is limited to read caching [3].

The authors use the .NET MyServices set of services for an
experiment in caching for disconnected operation. .NET
MyServices are services offering personal profile maintenance
and a contacts directory. The exposed operations are Query,
Insert, Update and Delete operations [3].

The proposed architecture utilizes an intermediate SOAP proxy
agent, caching SOAP requests\responses made by service clients
and serving cached responses when the client is in disconnected
mode. Cached requests are queued up for replay (playback) at the
reintegration phase [3].

Two critical issues surrounding caching of Web Services are
identified, namely Cacheability\Playback, and cache Consistency
maintenance. For an effective web service cache, the authors
identify the requirement that all service operations must be
designable as Update or Query operations (Read\Write
semantics). The lack of semantic information in the service
description (WSDL) creates a challenge for caching consumers of
boxed web services. Query operations are deemed cacheable if
they do not alter the server state (e.g. server logs). Update
operations are operations that are state altering on the server [3].

Maintaining strong cache consistency on a mobile client is
deemed unachievable by the inherent property of weak
connectivity. Consistency is also explored when execution of an
operation invalidates a stored response of another. A proposed
solution is to invalidate the old record, or apply a modification
transformation for the in-cache record. The authors declare that
"for preexisting Web services, understanding the correct
consistency requirements is an extremely challenging issue" [3].

The effect of a web service cache on the User experience is
identified as a crucial criterion when evaluating an effective web
service cache. Ideally, the user should not be aware of
disconnections but this is identified as a difficult goal. An
additionally challenge is the ratio of consistency guarantees
offered by the cache and the quality of the user experience.
Altering the client to be cache-aware, and to display hints to the
user regarding the active consistency guarantees may have a
positive effect on the user experience [3]. The later proposition
does not satisfy the property of transparent deployability outlined
at the beginning of the paper.

Terry et al. discuss the effect of differing structural formatting of
SOAP messages on a web service cache. This is identified as a
possible problem when comparing requests for similarity. WSDL
is identified as providing enough information for an intermediate
proxy to fabricate a fake response to a service request. Although
the lack of a specification mechanism for Default values may limit
the range of possible fabricated responses [3].

Prefetching (hoarding) is identified as a mechanism to maximize
cache-hit rates. An implementation would employ an algorithm
for anticipating requests for prefetching. The lack of semantic
information about the service and the lack of a standard
mechanism for users to specify a set of requests for hoarding
complicate a cache implementation supporting prefetching [3].

Finally, maintaining application Security is outlined as an
important consideration. Though is complicated by lack of
standards regarding authorization of access to a web service
operation. An intermediary Proxy, caching for multiple clients,
may open a set of privacy\security holes, this is relevant when
cached responses differ by the authenticated user [3].

3.3 Caching of Objects in Distributed Object
Middleware (CORBA) for Mobility: Domint
Distributed object middlewares offer remote method execution,
platform interoperability, and location-transparency of objects.
The first two properties offer the closest resemblance of the Web
Services paradigm.

Conan et al. [2] describes an architecture offering disconnected
operation of a CORBA environment for mobile clients. Domint,
uses portable interceptors (PI), a CORBA mechanism for peaking
into and altering of the communication between a client and an
ORB (Object Request Broker). Domint offers continued operation
in partial and null-connection modes with minimal or no overhead
when operating in connected mode.

The transparency of utilizing CORBA's portable interceptors
enables connection awareness to be shifted away from both the
client and server objects and into the Domint middleware
extension. Domint works by intercepting requests made to the
CORBA ORB and transparently rerouting requests to a local
disconnected object [2].

Several performance protective measures are employed. In order
"not to punish strongly-connected clients", while strongly
connected, client’s requests go directly to the remote object [2].
Also a hysteresis mechanism is proposed for handling variations
in connection availability. An interface to the hysteresis
mechanism maybe consumed by the client application in order to
alert the user to changes in the connectivity-mode, also offering
the user the ability to voluntarily disconnect. Three connectivity
modes are recognized, namely: disconnected, partially connected,
and connected. Transparent switching between modes is activated

at the time of a client request. A set of inputs is required when
deciding on an operation to execute, the inputs are: disconnection
mode (voluntary or involuntary), the mode of the last request (to
the same object), the operation name, and the network\object
current connection mode. A matrix is developed allowing correct
state transfers in various modes [2].

In the connected mode, the requests are immediately sent to the
remote object. In the partially connected mode; the operation is
executed both locally and remotely, depending on the call
semantics (presence of in, out, in\out parameters and if a return
value is expected). In disconnected mode, operations are executed
locally, and are logged depending on the semantic relationships
with other operations. The log is vital at the reintegration phase
and reconciliation may need to occur to maintain coherency
between the disconnected object (the proxy) and the remote
object. However, Domint assumes that no object is accessed by
more than one disconnected client [2].

Preliminary performance evaluations, performed on a Windows
CE device, show overhead of 14% to 1% when connected, 50% to
6% when partially connected, and from 20% to 6% when
disconnected. The incurred computation cost is justified by the
introduction of transparent connectivity, without modification to
either the server or the client implementations [2].

3.4 Delayed Execution\Call Aggregation:
Reducing Overhead of .NET Remoting
In the context of Web Services, .NET Remoting is the
infrastructure implicitly in-use when .NET applications publish or
consume Web Services. Remoting abstracts remote objects to
behave as local objects. The Remoting infrastructure offers
various extensibility options, the lowest level communication
channel maybe replaced or customized, the messages to be
exchanged maybe modified before or after formatting, and calls to
remote objects maybe intercepted immediately after a consumer
issues a request and before the request is propagated downwards
in the remoting stacks. The later is the mechanism commonly
used in distributed object middlewares. The client accesses the
remote object via a local proxy, known as the Transparent Proxy
in .NET Remoting. The transparent proxy is generated at runtime
by the Real Proxy (also a client-side object). The real proxy is
generated when remote objects are referenced, and its binary
maybe replaced or modified without modification to the object
consumer.

Clegg [11] discusses the overhead introduced when employing
.NET Remoting for remote execution. Clegg describes and
evaluates an architecture that transparently monitors and
optimizes calls to remote objects. RROpt is modeled on the
DESORMI framework (Delayed-Evaluation, Self-Optimizing
Remote Method Invocation by Kelly, Field, Bennett, and Yeung).
The implementation is a modification to remoting-relevant code in
the .NET CLI, namely the Mono CLI. Such an implementation
eliminates the need for server\client modifications [11].

PROpt works by checking at runtime for candidate delayed calls,
specifically by looking for methods of objects inheriting from
MarshalByRefObject. When a remote call is incurred, it is stored
in a delayed-list and a dummy return is pushed to the stack. If a
method attempts to use the return value then the delayed method
is immediately executed. A set of delayed methods is executed by
formulating a plan encapsulating their data dependencies and
forwarding the plan to the server. PROpt assumes that all servers
are PROpt-enabled (executing on top of Mono CLI with PROpt

extensions). Argument aggregation is also performed when a set
of methods share an argument [11].

Another optimization employed by PROpt is Plan caching, sets of
previously executed aggregated-calls (a plan) are remembered on
the server, a client refers to them by ID, furthermore decreasing
network traffic requirements [11].

The remoting infrastructure protects applications by containing
them in “Application Domains” (light weight processes). Multiple
client accessing the same remote object are not aware of each
other, multiple application domains may be hosted within one
process. Furthermore, multiple remote objects on a single remote
server maybe accessed by a set of application domains in a
process. In order to aggregate cross-object, PROpt implements its
aggregation targets per server name [11].

The speedup possible by PROpt did not prove to be consistent.
PROpt performed well when data dependencies between methods
existed. Outbound Network traffic is significantly decreased due
to call\parameter aggregation. PROpt optimizations failed to
materialize when no data dependencies exist between method
calls, this is the case when the network infrastructure is fast [11].
No applicability to mobile clients is considered.

4. A WEB SERVICE CACHE

4.1 General Considerations
An architecture supporting a predefined set of services and a
special client implementation is an application-specific cache. An
application-specific cache is optimized for the application logic,
all caching decisions (such as placement, replacement,
prefetching) target optimal consistency and performance of the
application. Proprietary communication protocols (such as ones
supporting compression, or multicast notification of cache
invalidation) are expected, as the application permits [3, 8].

A General caching architecture, on the other hand, offers a cache
to any Web service. Such architecture faces many challenges,
most importantly is the decision of cacheability of a web service
request. A Web service is treated as a black box, requiring the
availability of cache-hints (metadata) supporting decisions such as
cacheability, invalidation conditions, and default responses (return
values) [3].

A caching proxy is necessary in a general cache, in order to
support independent caching decisions (independent of the client
and the server). On the other hand, an application-specific
implementation maybe embedded in the web service and client
implementations.

When the goal of a cache is to improve the availability of a web
service, then a larger Cache-size and optimal placement and
replacement strategies are a priority. The existence of stale-
resources (invalid cache records) in the cache is permitted, hence
to improve the service's availability. Knowledge of the MH
connection-state is necessary, in order to seamlessly resume
returning of cached responses when the MH enters null
connectivity. Cached responses are returned only when the MH
enters null connectivity, in order to achieve the best-possible
cache consistency. Newer requests overwrite their older
counterparts in the cache.

On the other hand, when the goal of caching is to improve the
application's performance, then cached responses can be returned
even when the MH is in full connectivity mode. Such an approach
may result in substantial response-time improvements, especially

for expensive web service methods: methods requiring a relatively
large set of arguments, methods requiring an expensive or lengthy
computation, and methods returning a sizable data object. Web
service requests maybe aggregated to improve bandwidth
utilization while returning cached responses. The downside to
such performance optimizations is decreased cache consistency in
relation to the real web service. A workaround to further improve
the consistency of cached responses maybe achieved by
periodically prefetching, or periodically submitting invalidation-
queries of expensive cached responses.

4.2 Cache Location
A server-side cache offloads the server from re-computation of
frequent requests. Such a cache implementation is commonly a
specialized architecture. Cache-consistency is best obtained when
using this approach, since invalidation reports maybe requested or
broadcasted to the known caching proxy (or proxies). Another
improvement is the transparency of the cache for a MH
consuming the web service. A slight improvement in service
availability is present due to a protection from server downtimes,
as the server-side cache continues operation while the server is
down. On the other hand, a MH suffering local null connectivity
is also disconnected from the server-side cache.

A client-side cache offers the service's availability to the MH
while in null connectivity [10]. Cache-consistency is minimally
maintained in this approach. Near-time cache invalidation is
harder to achieve since the MH cache is independent of the
service implementation [3, 8].

An intermediate caching proxy offers transparent service caching
for a MH. A caching proxy is more capable of tracking the list of
caching MHs as it act as an intermediate delta between multiple
MHs and multiple service providers. A shared cache is in effect,
as requests from multiple MHs are cached for other MHs. An
intermediate cache is best equipped, independently of the service
provider, to deliver invalidation reports to the tracked list of MHs.
The service remains unavailable to a MH in null connectivity, as
the intermediate cache becomes disconnected.

A client-side cache assisted by a caching proxy is best equipped
when the goal is protect the client from service unavailability
while maintaining best-possible cache consistency. Several
performance improvements are now possible because the client-
side cache and the intermediate caching proxy can agree on a
proprietary communication protocol supporting better request
aggregation and near-time broadcasts of cache invalidation
reports.

4.3 Semantic Metadata
The lack of semantic metadata f a web service methods presents a
challenge for caching independently of the service
implementation [3, 8]. The metadata may accompany the service
as an extension to the service's WSDL document, or maybe
maintained by a third party maintaining a repository of metadata
records targeting a growing set of a web services. An alternative is
to allow the service consumer to specify an updatable set of meta
tags, assisting caching decisions when determining cacheability
and invalidation conditions. Client maintained metadata are
specified per web service.

A web service method should be tagged if it is cacheable, and a
default return value should be specified. The former aids the
cacheability decision of the cache, while the latter offers a
protection against cache-missed of a MH in null connectivity.

Additional tags may outline invalidation conditions based on
time-values, age-thresholds. Method interdependencies will aid
request-aggregation logic and can also provide further
improvement when maintaining cache consistency by invalidating
cached responses when state-modifying requests are executed.

4.4 Caching Policy
The request signature and argument values must be considered in
hash function supporting cache placement of web service
responses. Since multiple requests to the same method may differ
on a single argument, while unique responses are always returned.

LRU, LFU and Size are competing replacement strategies when a
decision relates to limiting the cache size, especially for a MH
with space and computation constraints [7]. It is to be determined
if any or a combination of the well studied replacement strategies
are best suited for a web service cache supporting mobile devices.

A cached response maybe invalidated by its age or a timeout
value. Furthermore, a cached resource maybe invalidated and
evicted from the cache because an invalidating request was
submitted.

Cache invalidation reports maybe broadcasted by the server or an
intermediate proxy, or maybe piggybacked on the results of new
requests. Furthermore, invalidation query maybe submitted on
intervals or piggybacked on new requests. Limitations are present
depending on the cache location and the number of entities
supporting caching between the MH and the service provider [3,
8, 10].

Default return values are useful on a cold-start or when a cache-
miss occurs while the MH is in null connectivity mode.

An alternative for recovery from a cache-miss when the original
service is down while the MH is fully connected is by rerouting of
requests to a service replica. This approach further protects the
MH from service unavailability due to provider downtimes or
peak hour unavailability.

The consistency of responses between the service replica and the
original provider is an issue out of context for this research.

4.5 Prefetching\Hoarding
On a cold start, a MH may issue a set of predefined requests for
caching. Alternatively, the service provider or an intermediate
cache maybe store an up-to-date image of most frequently
requests methods and push them to the client on a cold start.

Prefetching offers substantial improvements in response times to
most frequently requested methods, at the expense of higher
bandwidth utilization. The negative side effects of prefetching
maybe overcame by request-aggregation and by adaptive
prefetching logic with explicit awareness of network QoS [9].

4.6 Client Sessions
A MH utilizing a communication channel supporting session state
can benefit from an intermediate cache retaining a MH-tailored
list of frequent requests. Prefetch or hoarding requests can be
initiated on the behalf of the MH.

For a frequently disconnecting MH, expensive requests made
while in full connectivity maybe pushed upon reintegration. The
minimum improvement is in effect when a cache-refresh cycle (or
a cache-replacement function) is executed and an expensive
request is not evicted because the owner MH connectivity is
considered.

5. PROPOSED ARCHITECTURE
The design of the proposed architecture is modelled to support the
following two scenarios and their consequences:

1. Null Connectivity: The MH enters null connectivity, on a
new request the following conditions are evaluated:

A] Cache-hit, the cached response is returned. A state-
altering request is queued into the Replay queue. State-
reading requests are queued into a Delayed-fetch queue, a
mechanism for improving cache consistency at the
reintegration phase.

B] Cache-miss (Cold Start), a default return-value is
returned. A state-altering request is queued in the Replay
queue. A state-reading request is queued for delayed fetch.

2. Full Connectivity: The MH enters full connectivity, the
following conditions are evaluated:

Non-empty Cache:
A] Cache Miss:
New requests go directly to the Web Service, and when a
response is received; a request\response tuple is inserted into
the cache.

B] Cache Hit: State-altering requests are sent directly to the
service, a request\response tuple is cached. A response to a
state-reading request is returned from cache (if the response
is valid or if the request is long-living), the state-reading
request is queued for delayed-fetch, a mechanism for
improving cache consistency in the long-run. A long-living
request is a request with a long cache TTL or the time (t) of
the cached response is less than the invalidation time (On
Time) of the method.

Empty Cache (Cold Start):
A] On start, if an intermediate proxy exist, request a cache
Image, Done.

B] On start, if a Prefetch-list is known, queue all items from
the list into the Delayed-fetch queue, Done.

C] On a new Request and a Cache Miss: Return the default
return-value associated with the request and queue state-
altering requests into the Replay queue. State-reading
requests are queued for delayed-fetch.

For effective caching of the Web Service this approach uses a
document encapsulating the Semantics of the Web Service. The
encapsulated semantics are shareable, and are either defined by
the service Consumer (at development time) or by the service
Provider. This paper refers to the document encapsulating the
service semantics as the Service Semantics Description Document
(SSD Document), an XML document. The SSD also specifies
Hints aiding various cache operations (Invalidation Conditions,
Prefetch Lists, and addresses of a Replica and Intermediate
Proxy).

A developer tool that integrates within the IDE of Microsoft
Visual Studio.NET is provided to aid a mobile application
developer to seamlessly specify an SSD. A similar tool is also
provided for a Web Service developer in order to specify an SSD.
The developer tool allows transparent incorporation of a cached
Web Service while decoupling the programmer from the caching
infrastructure.

The Service Semantics Description document specifies the
following metadata regarding each service Method:

1] Cacheability: specifying if a method should be cached or not. A
method is non-cacheable if a cached value will always lead to
faulty application logic (e.g. a GetLastRequest method).

2] Replay: upon reconnection, this tag hints if a method should be
replayed or not. To maintain application logic, a State-altering
method should be tagged for ‘Replay’. A method may not be
tagged for replay because of one of two reason; either the method
is state-reading or the method’s state-altering behaviour is
irrelevant upon reconnection.

3] Default Return Values: the value of this tag is a serialized-
graph of a meaningful default return value for a method. This tag
enables the MH to partially recover from a Cache-Miss while in
full connectivity, or when a MH cold starts. It is expected that
only cacheable (state-reading) methods will have default return
values. State-altering methods can not have default return values
as this may lead to illogical returns (e.g. a Bool CreateRecord()
method, returning success or failure of record creation).

4] Invalidation Conditions: a cached response should be
invalidated after a specified Age (in minutes), or after a certain
time of day, or when an invalidating hint is received (or fetched),
the latter is not implemented.

5] Method Interdependencies: for N methods, this is an N x N
table specifying interdependencies between service methods.
Effective Request-aggregation can only be implemented if method
interdependencies are known, the current prototype does not
implement request-aggregation. A cached response is invalidated
if a state-altering request, that is also a dependency of the cached
response, is submitted. A table lookup is used to invalidate a
cached response.

6] Prefetch Parameters: a list of method names and proper
arguments is specified to enable prefetching on a cold start or at
periodic intervals.

7] Intermediate Cache Proxy: a URI specifying the network path
to an intermediate Caching Proxy, the caching proxy interface
appears as a replica of the original Web Service.

8] Service Replica: a URI specifying the network path of service
Replica. A Replica is utilized when a service downtime is
detected.

The implementation of the Cache is built as a Proxy of the Web
Service, the Proxy exposes an interface identical to the real
service, decoupling the service consumer and service provider
from the cache. The Proxy implementation is essentially a
disconnected Object providing transparent access to the real
service while continuously monitoring service availability and
network connectivity of the MH. This object is referred to as the
Caching Web Service Object (CWSO).

The CWSO implements a Hashtable for storing tuples of
request\response pairs. A connectivity monitor detects service
availability by requesting the service’s WSDL at predefined
intervals (5minutes). The connectivity monitor has OS hooks to
detect network connectivity at the MH, entering the CWSO into
one of two states; Full Connectivity and Null Connectivity. A
Replay FIFO queue and a Delayed-fetch FIFO queue are used for

queuing state-altering requests (the former) and queuing of
prefetch-requests (or delayed-fetch requests).

The SSD document is stored as an XML file accompanying the
Real Proxy assembly. The CWSO provides an interface for
consumers wishing to alter the service semantics or the default
caching policy at runtime.

The Cache hashtable contains wrapped IMessage objects
(CacheEntry). An IMessage object specifies the method’s
signature, argument list, call context, and method’s response. The
CacheEntry object includes the request time and time of the last
cache-hit, along with the object’s size in bytes.

The Cache Manager executes at state transitions (Full
Connectivity and Null Connectivity) and appropriate action is
taken. The Replay queue is processed before processing of the
Delayed-fetch queue, to allow state changes to occur before
processing of new state-reading operations. The processing of the
Replay queue is started at a random interval between 1-5 minutes
after achieving full connectivity. On a Cold-start, the replay-queue
is empty and processing commences with the delayed-fetch queue
instead.

The Intermediate Caching Proxy (ICP) hosts an exact copy of the
MH’s CWSO, plus an additional connectivity monitor targeting
MHs. Connectivity session management between the ICP CWSO
and the MH’s CWSO is planned as future work.

The link between the MH and the ICP is a wireless link
susceptible to disconnection and low QoS (factors of weak
connectivity), SOAP communication is tunnelled over a
‘customizable’ HTTP channel (e.g. Compressed). The link
between the ICP and the real Web Service is assumed to be a
wired link, offering higher bandwidth and strong connectivity, the
communication is couriered by standard HTTP.

When the MH’s CWSO is accessing either the real Web Service
or the ICP; the logic is consistent. A replica Web Service appears
to be the real Web Service to both the CWSO and the ICP. The
MH or the ICP both appear as simple clients to either the Web
Service or the Replica.

If a Service Connectivity Manager detects a service downtime
(failure to return a WSDL document), requests are transparently
routed to a Replica (if exist) or the Cache. If the connectivity
manager detects null connectivity at the MH, then the ICP, the
real Web Service and the Replica are all disconnected, and all
requests are routed to the local Cache.

Cached responses are invalidated by Age or Time (from the SSD),
the detection of an invalid CacheEntry happens when a cache-hit
is suspected or when the CWSO executes the cache’s
SizeManager (every 20mins). CacheEntry objects maybe evicted
from the cache if the cache-size exceeds a threshold (predefined
as 10mb), the eviction strategy maybe LRU or SIZE.

���������	��
�����	�����������

�

�

�� � � ���� ��� �!� "�#
��	� �	���

� �� ����� �� ��$ �
� ��� �� � �$ � 	� �� ��%� �$ & '�

�� � �(��)
� �� �"��(���$ �$ � 	� �� ���
%* � & '�

������ �� � ������ � � ���� � ��� �� ���	�

������� � �� �� � ���� �� � ��� � ���� � ��� �� ���	�

� � � ��	� ���� ��� �� ������ ���	��
� ! ��

�

�

�� � � ���� ��� �!� "�#
��	� �	���

��# ���� � � �)�� � ���

� �� � � �
%� ��� � �+ & � '�

�� �& �, �
- . � . � �
%/ !/ �'�

��$ �
%* � & '�

���� �� ��� � � �� ��� ��� �� � �� ��

� � 	" �� # ����$ % �
&� ���

�

�

�� � � ���� ��� �!� "�#
��	� �	���

��# ���� � � �)�� � ���

� �� � � �
%� ��� � �+ & � '�

�� �& �, �
- . � . � �
%/ !/ �'�

��$ �
%* � & '�

���� �� ��� � � �� ��� ��� �� � �� ��

� � �� � � �� ��� ��� �� � �� ��

�����	����� � � ��	� �� 	��� ���� �
�� ��

�

� $ � / �. & � ��� � . �� �0 �& . � �1�����������	
 ��� � ��� � � ��

� �� � � �+ !& !� , �� �2 �1�� # � 3 �# � ���� � � � ��� �� ��� �� � � � �

�� �0 !� � ��� �& !� �1�� � ��

!� 0 �& !$ �� !�� �� �� $!� !�� �1���� �� �� ���� ������ ��

!� � � �� � $!�� � �� �� � � ����* , 1�� � ��

� � � � �$ �!� � � �)$ � �� � $ � � � !� �1�! �" �! �� �# ���

��� / � � � � ������ � � � ��1�� ��� $ ��% �� � & � �' ��� � ��

6. PRELIMINARY EVALUATION
6.1 Experimentation Plan
Two experiments have been performed, the first experiment
measures the Overhead introduced by CWSO on the MH. The
second experiment captures the State Transitions when controlling
factors are toggled.

The scenarios are controlled by the following factors:

• Network Connectivity: Connected and Not Connected

• Service: Available and Unavailable

• Request: State-reading R, State-altering W

• Cache Test: Hit or Miss

The service provider in the Experiment 1 is on the same host as
the emulated MH. This decision was made to eliminate network
latencies from the experimental results. All performance data in
this experiment is collected at the local MH.

The service provider in the Experiment 2 is a remote host. The
collected performance data is local to the MH.

A mobile network was not utilized in these experiments, this
should not skew the result sets since this implementation does not
introduce additional communication.

The link between the ICP and MH’s CWSO is a standard HTTP
stream, SOAP Compression is not yet implemented.

Cooperative Caching and Prefetching has not been tested.

Network, Service, Replica and ICP availability is simulated by
object parameters.

The active replacement policy is LRU.

6.2 Test Suit
6.2.1 Hypothetical Web Service (HWS)
The service exposes 4 methods, R denotes a State-reading
method, W denotes a State-altering (write) method:

OUT R_1() consistently returns a constant value.

OUT R_2(in) is a function of in.

OUT W_1(in) is state-altering returning success\failure.

VOID W_2(in) is state-altering without return.

The ‘in’ argument to method R_2 is an Integer, W_1 and W_2
‘in’ arguments are of type String, the String arguments vary
randomly in size between 100bytes and 1kb.

The return value of R_1 is a String, R_2 is an Integer and W_1 is
Boolean.

The associated SSD is available in [13].

The goals of this experiment is to test processing overhead (CPU)
and cache-size overhead (Memory) at the MH’s CWSO when
1000 requests are sequentially executed.

To calculate CPU and Memory overheads, the experiment is run
twice, for each method. The first run is performed without the
CWSO, the second run is with the CWSO. CWSO initialization
times are accounted for.

6.2.2 I-Help Web Services
I-Help is a real-world public discussion forum system, utilized
mainly by Computer Science students at our department. Actual
User Traces were not collected for this experiment, instead the

goal of this experiment is to verify the architecture’s general
applicability to existing Web Services and secondly to verify the
system’s State Transitions when controlling factors are toggled.

I-Help Web Services exposes two operations of interest, a Query
operation and a Post operation, the associated SSD document is
available in [13].

6.3 Experimental Conditions
Mobile Application: Proof of Concept Client

MH: Emulator Windows CE.NET 4.2.

Experiment 1 Service Provider: .NET Assembly

Experiment 2 Service Provider, 3rd-party implementation: Axis,
Java Web Services

6.4 Preliminary Results
6.4.1 Experiment 1: Overhead

0

5

10

15

20

25

30

35

40

45

50

CPU (%) Cache Size (kb)

0

2000

4000

6000

8000

10000

12000

0

0.5

1

1.5

2

2.5

3

3.5

CPU and Cache-Size, Experiment 1, Method: R_2

CPU and Cache-Size, Experiment 1, Method: R_1:

CPU and Cache-Size, Experiment 1, Method: W_1

0

1

2

3

4

5

6

7

8

6.4.2 Experiment 2: State Transitions

N
et

w
or

k
C

on
ne

ct
iv

ity

W
S

A

va
ila

bi
lit

y

C
ac

he
 H

it

O
pe

ra
tio

n

E
xe

cu
te

 a
t

S
er

vi
ce

C
ac

he

D
ef

au
lt

D
el

ay
 F

et
ch

R
ep

la
y

'� '� '� (� �)� �)� �

'� '� '� ��)� � � � �

'� '� *� (�)� � � � �

'� *� *� �� � �)� �)�

'� *� '� (� �)� �)� �

'� *� '� �� �)� � �)�

*� '� *� (� � �)�)� �

*� '� *� �� � �)� �)�

*� '� '� (� �)� �)� �

*� *� '� �� �)� � �)�

*� *� *� (� � �)�)� �

*� *� *� �� � �)� �)�

6.5 Summary of Results
The results show that the CPU overhead at the MH, expended in
the Real Proxy object by the components: Service Connectivity
Monitor, Cache-Hit Test, Cache-Size manager and the Queues,
did not rise above 10%, as a preliminary result this is acceptable.

The SSD’s description of W_1 as non-cacheable successfully
resulted in a Cache-size of 0bytes. W_2, marked with a VOID
return resulted in a similar outcome. R_1 returning a constant
occupied 45kb in the Cache, a value indicative of the size of
initial CacheEntry object, Hashtable initialization along with a set
of data owned by the .NET Framework’s memory management.
On R_2 execution, cache-size grew rapidly as random ‘in’
arguments were sent with every new request, the cache-size
capped at 10mb, the predefined maximum allowable cache-size,
future requests replaced in-cache entries by the LRU strategy.

The CWSO State changes match expectations. The detected States
match the architecture’s logical design. This experiment utilized a

real-world Web Service, demonstrating general applicability of
the architecture.

7. FUTURE WORK
Embed the Service Semantics Description within the service's
WSDL, this maybe done by utilizing WSDL Extensibility via
attributes and element extensions. Merging the syntactic
description (WSDL) with the semantic description (SSD) is very
valuable, revoking the need for a separate SSD document and
enabling smoother integration and richer discovery of Web
Services.

8. CONCLUSION
This paper presented a generally applicable, connectivity-aware,
and a transparent approach to caching of Web Services. A set of
semantic tags have been identified as a prerequisite for effective
web service caching. The Service Semantic Description document
was developed, along with a tool enabling SSD-specification from
within a widely used developer IDE. Preliminary evaluations of
the architecture demonstrated general applicability, transparent
operation and low resource overhead.

9. REFERENCES
[1] D. Barbar, T. Imielinski. Sleepers and Workaholics: Caching

Strategies in Mobile Environments (1994).

[2] Denis Conan, Sophie Chabridon, Olivier Villin, and Guy
Bernard. Domint: A Platform for Weak Connectivity and
Disconnected CORBA Objects on Hand-Held Devices (May
2003).

[3] Douglas B. Terry and Venugopalan Ramasubramanian.
Caching XML Web Services (May 2003).

[4] Jen-Yao Chung, Kwei-Jay Lin, Richard G. Mathieu. Web
Services Computing: Advancing Software Interoperability
(2003).

[5] Jia Wang. A Survey of Web Caching Schemes for the
Internet (1999).

[6] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P.
Sturm. Enhancing the web infrastructure - from caching to
replication (April 1997).

[7] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, J. Schiller.
Performance Considerations for Mobile Web Services
(2003).

[8] Matt Powell. XML Web Service Caching Strategies (April
2002).

[9] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. A
study of integrated prefetching and caching strategies (June
1995).

[10] Roy Friedman. Caching Web Services in Mobile Ad-Hoc
Networks: Opportunities and Challenges (2002).

[11] Sam Clegg. Reducing the Network Overheads of .NET
Remoting through Runtime Call Aggregation (2003).

[12] W3C Web Services Activity
(http://www.w3.org/2002/ws/)

[13] Paper Appendix
(http://www.cs.usask.ca/~kae501/880/)

CPU and Cache-Size, Experiment 1, Method: W_2

