
The Costs of Using JXTA: Initial Benchmarking Results

 Emir Halepovic
Department of Computer Science

University of Saskatchewan
emir.h@cs.usask.ca

ABSTRACT
Project JXTA is the first peer-to-peer application development
infrastructure, which includes standard protocols and multi-
language implementations. The performance and scalability of
JXTA are not well understood, despite its widespread usage in the
research community and increasing popularity in the industry.
This paper proposes a JXTA performance model and presents
results obtained by benchmarking JXTA components. The results
show the performance characteristics of the current JXTA
reference implementation from a peer perspective. Important
performance issues and trade-offs are identified and discussed, as
a basis for the formulation of guidelines for system designers and
simulation-based research of JXTA networks.

General Terms
Measurement, Performance.

Keywords
Peer-to-Peer, Distributed Computing, Performance, JXTA.

1. INTRODUCTION
Peer-to-peer (p2p) systems in general are characterized by
decentralized control, high autonomy of participating nodes and
heterogeneity in terms of processing power and shared hardware
and software resources. Such systems are attractive for several
reasons; among the most important are the lack of centralized
control and a single point of failure, and the potential to scale to
very large sizes.
Project JXTA [18] has joined the peer-to-peer family with a novel
approach. Instead of providing a solution for a specific p2p
application domain, JXTA offers generic building blocks for the
development of any type of p2p system, from collaboration to
parallel computation [16, 27]. JXTA defines protocols for core
p2p operations, such as discovery, messaging and group
organization. Over two years of development in an open-source
community have produced a solid API, largely tested in academic
environment as a platform for prototyping various p2p concepts.
Current statistics indicate that the JXTA community has grown to
almost 13,000 members, with up to 20,000 downloads per week
[18]. The existing applications of JXTA range from RDF-based
resource discovery and retrieval [17], to p2p discussion forums
[5]. The popularity of JXTA has spread into the market
environment and some commercial products are already available
[19]. However, the performance and scalability of JXTA are not
well understood.
This paper will provide performance results of core JXTA
components to both the research and developer community, as
well as identify the components of a JXTA performance model. In

a sense, this work represents a peer-centric view of the
performance of JXTA. Specifically, message round-trip time
(RTT), data throughput, and effects of various network and
transport configurations are investigated. The results presented are
useful for several purposes. First, the JXTA platform developers
would benefit from establishing baseline performance results for
the version 1.0 of the JXTA protocols implementation, as version
2.0 is being introduced. Second, the designers and users of p2p
systems based on JXTA need to know the performance limits of
their products, and need the guidelines to improve design and
implementation. Finally, the p2p research based on simulation is
provided with realistic parameters obtained from the real-life
experiments.
This study is based on the latest and final stable release of JXTA
1.0 implementation for Java 2 Standard Edition (J2SE). The
earliest stage of the work involved a design and implementation of
the benchmark suite for evaluating JXTA components. The
benchmarks are designed at the application level, so that they are
reusable for future work on evaluating new JXTA versions.
The rest of the paper is organized as follows. Section 2 gives an
overview of the JXTA platform. Section 3 describes the
performance model of JXTA components and Section 4 presents
the analysis of performance results. Related work is described in
Section 5, and conclusions are given in Section 6.

2. JXTA OVERVIEW
Project JXTA is the first attempt to formulate core p2p protocols,
on top of which interoperable p2p applications could be built
[26]. Standardization of the common protocols would allow for
easier interaction between heterogeneous peers. A lot of effort in
the past years has gone into the implementation of application-
specific protocols, such as for file sharing, instant messaging or
collaboration. Standard protocols would provide the basic
functionality for peer and resource discovery, communication and
organization, which are necessary for all p2p applications. The
details of JXTA protocols are provided in [12].
As a set of protocols, JXTA is independent of any programming
language, operating system, device or underlying network
transport [26]. JXTA is developed as an open-source effort, and
uses open standards as its interoperability foundation, which is
best represented by its dependability on XML. The reference
implementation is available in Java language and C, Python, Perl
and other language implementations are provided as community
projects [18].
In general, p2p applications must handle intermittent connectivity,
dynamic IP addresses and an unstable network topology.
Therefore, the developers face a challenge of designing
applications that are independent of DNS and IP addressing and
identification. This is why JXTA introduces a virtual network

layer, on top of the existing transport protocols, with its own
addressing and routing, facilitating interaction in this dynamic
environment [26]. This virtual network is able to cross barriers
like firewalls and Network Address Translation (NAT), and
establish peer communities spanning any part of the physical
network.
The main concepts in JXTA are described in the following
sections, with reference to the example in Figure 1, where a
network of five peers is shown. The following scenario is
assumed: peer A provides a weather forecast service, and peer B
needs to discover it and request the current forecast report.

2.1 Peers and Peer Groups
The JXTA virtual network consists of several kinds of peers [20].
Most of the peers are simple or edge peers, usually desktop
computers connected by a LAN or modem to the Internet, such as
peers A, C and D. Small devices, such as peer B, are minimal
peers, since their resource constraints would most likely disallow
full functionality. They use help from the proxy peers (e.g. peer
B), for caching, search and discovery. Rendezvous peers are
usually more powerful peers, with well-known DNS name or
stable IP address, and they act as caches of information about the
connected peers. Relay peers have a special role to learn and
provide routing information and pass messages between peers
separated by firewalls and NAT. In Figure 1, peer R acts as both
relay and rendezvous.
Peers organize into peer groups and all communication is
constrained to the group members. Peer groups are not limited to
the physical network boundaries. In the network from Figure 1,
peer D does not receive messages from group G, because it is not
a member, although it may use the same rendezvous or relay.

2.2 Advertisements
All entities in JXTA, including peers, groups, pipes and services,
are represented by advertisements, which are XML documents of
a well-defined format [12]. Advertisements carry a unique random
ID number of the resource or entity they represent, and optional
additional information, such as human-readable names and
descriptions. Peers use advertisements to learn about other peers
and services they provide. Advertisements have a lifetime, after
which they are considered stale and purged. A publisher peer is
responsible for “refreshing” or republishing its expired
advertisements. The lifetime mechanism is important for
automatic repair of the network, in case of peer departures and
failures. A major peer operation is to purge its local cache of stale

advertisements upon startup. This prevents a peer from attempting
to access non-existent peers and services. Peer A from Figure 1
publishes its weather forecast service advertisement, which other
peers cache for a specified lifetime. During this lifetime, potential
consumer peers, such as peer B, can find the service and access it.
After the lifetime has expired, peer A should republish the service
advertisement. If peer B joined the network after the
advertisements was published, it can search and discover the
advertisement from the network.
Publishing, discovery and exchange of advertisements is an
essential step in the process of connecting a JXTA peer network.
Efficiency of the advertisement processing and management
impacts the performance of operations on the resources
represented by advertisements.

2.3 Pipes and Messages
JXTA pipes are a fundamental abstraction used for inter-peer
communication. JXTA peers pass messages through pipes, virtual
channels that consist of input and output ends. Peers bind to one
end of the pipe and when both ends are bound, messages can be
passed. Pipes are not bound to the physical location, IP address or
a port. Instead, pipes have a unique ID, so each peer can carry its
pipe with itself even when its physical network location changes.
At runtime, a pipe end is resolved to an endpoint address to which
it is currently bound.
In Figure 1, peer A must open a pipe input end to receive forecast
service requests, and publish the pipe’s advertisement, either
separately or embed it with the forecast service advertisement.
This tells other peers where to connect if they want to send a
request. At runtime, peer B obtains the pipe advertisements, and
queries the network for the peer who has opened the pipe input
end. Once peer A has responded, peer B can open the pipe output
end and send the request.
Pipes are unidirectional and unreliable by definition, but bi-
directional and reliable services are provided on top of them. Two
operation modes of pipes are defined: unicast and propagate.
Unicast pipes serve for one-to-one communication, connecting
two peers. Propagate pipes connect one sender peer to many
receiving peers. Pipes are asynchronous, and message elements
such as unique IDs are used for sequencing.
JXTA messages are XML-documents composed of well defined
and ordered message elements [12]. The elements are name-value
pairs, and they can carry any type of payload. JXTA uses source-
based routing and each message carries its routing information, as
a sequence of peers to traverse. The peers along the path update
this information. The routing elements tend to get large, primarily
due to the 256-bit peer ID [12], composed of the own and the
group ID. This implies that even an “empty” message, with no
application-specific payload, can easily reach 1 KB in size,
affecting the performance of message exchange.

2.4 Rendezvous and Relay Peers
To support resource binding and the exchange of messages across
networks and firewalls, two special concepts exist in JXTA:
rendezvous and relay peers. Rendezvous peers agree to cache
advertisements for their peer group, propagate messages and
scope the advertisement query recipients. Rendezvous peers also
provide a common location for peers from separate networks to
exchange advertisements. They facilitate search and discovery and
provide resolving operations, such as peer name resolution to an

Figure 1: JXTA peer network

IP address [26]. Peer R acts as a rendezvous peer for group G in
Figure 1. When peer A publishes the service or pipe
advertisement, peer R propagates it to the other group members.
When the peer B searches for the forecast service, peer R
responds with matching advertisements or propagates the query to
other peers, if no matching advertisement is found in its cache.
Relay peers, on the other hand, store routing information.
Although JXTA messages contain routing information, relays are
used when communication has to pass through a firewall. Relay
peers can also spool messages for unreachable peers and serve as
bridges between physical networks [26]. For example, since peers
A and B are on different networks, they need relay R to pass
messages between them. Any JXTA peer can become a relay or a
rendezvous, but this usually depends on hardware and bandwidth
constraints and security policies. Enterprise installations behind a
firewall or NAT usually expose one public rendezvous/relay for
connections from outside peers.

3. PERFORMANCE MODEL
As a distributed and network-centric architecture, JXTA is
evaluated primarily through its features of peer connectivity,
communication and scalability. The connectivity and
communication performance of JXTA are explored through a
model consisting of the following components and metrics:

o Latency of typical peer operations
o Message round-trip time (RTT)
o Pipe message and data throughput
o Rendezvous peer query and response throughput
o Relay peer message throughput

These components and metrics are discussed and evaluated
through their role in successful and effective deployment of a
JXTA-based system. The benchmarks, metrics and discussion
presented should also be applicable to any structured hierarchical
p2p network, even the well-known popular file-sharing networks
[4, 14].

3.1 Typical Peer Operations
A JXTA peer needs to perform a series of steps (operations) to
join and participate in a JXTA network (Figure 2). Depending on
the application and type of peer (edge, rendezvous or relay), the
number and order of these steps may vary. The steps are dictated
by the modular design of JXTA protocols and their
implementation. Even the simplest peer operations are
implemented with a high level of abstraction. It is expected to find
a high performance penalty associated with layers of abstraction,
especially in terms of latency and response delay. In addition, a
peer may repeatedly and frequently perform some operations,
which then aggregate to a large performance cost.

From the performance perspective, a developer would be
interested in the cost of these operations due to at least two
reasons, (1) high-cost of basic operations involved to complete a
step, and (2) frequency of steps or operations performed. Note
that most of the high-level steps are actually sets of distinct
individual operations that a peer application may repeatedly
perform during its lifetime, but the cost of a single step execution
is measured for this study. In addition, the actual operations may
be executed in different ways depending on the circumstances, but
only the typical combination that a single step goes through is
considered. The decision on what is considered typical has been
strongly based on two applications: a p2p forum system [5] and
MyJXTA [16].
The typical high-level steps and their basic operations are
presented in the relative order a peer performs them (Figure 2):

1. Bootstrap the JXTA platform.
2. Join a peer group, according to user preferences or

common peer services, and to enjoy a more secure and
efficient environment.

3. Publish own advertisements, to make peers aware of
our presence and available resources.

4. Open an input pipe, to receive messages from peers.
5. Learn about other peers, who participate in the same

group and share common resources.
6. Obtain pipe advertisements to interact with other peers.
7. Open output pipe to send messages to other peer.

1. Bootstrapping the JXTA platform loads a large class library,
which may involve access to the local disk, network file system
(NFS) or maybe even the Internet. This step builds the data
structures to support the JXTA platform, cleans-up local cache
and opens listener sockets, which are all time-consuming
operations. Section 4.1 will show that bootstrapping is indeed
very costly, compared to other steps, which could become an issue
for peers with constrained resources.
During the bootstrap, all peers join the default hard-coded peer
group, which is a universal worldwide peer group. Peers may
choose to stay in this group, or join other groups. An edge peer
also connects to the rendezvous and relay peers during bootstrap,
if configured to do so. Once a peer bootstraps the platform, it may
perform other steps, depending on the circumstances. Rendezvous
and relay peers do not need to perform any other steps, because
they are ready to serve the default peer group right after the
bootstrapping. If they serve another user-defined group, then they
proceed to join that group and open their services to the group
members. For any peer, bootstrapping is the essential, first and
complex step to perform, and it is therefore relevant for the

Figure 2: Typical peer operations

 Load platform classes
Join default group
Open listener sockets
Clean-up cache
etc.

Bootstrap
Load group adv.
Instantiate group
Apply for membership
Join group

Join group
Load pipe adv.
Open input end

Open input pipe
Load peer adv.
Get remote peers

Learn about peers Get pipe ads

Bind output end

Open output pipe

Publish locally
Publish remotely

Publish own adv.
Load pipe adv.
Get remote pipes

performance study. A peer can bootstrap the JXTA platform only
once inside the same Java Virtual Machine (JVM).
2. Joining a group is usually the next step after bootstrapping,
and it is performed in JXTA by loading a peer group
advertisement from cache, instantiating a peer group object, and
then applying for membership using a credential. Obtaining a
membership may involve different delay costs, according to the
security policies of the peer group, ranging from open access to
LDAP authentication [1]. All communication with the rest of the
peer network is done in the context of the peer group, even if that
is just the default peer group. If a peer is joining the group for the
first time ever, it must discover the peer group advertisement from
the network or initiate a group by creating a brand new
advertisement. Rendezvous peers are normally the ones that
initiate a peer group, whereas edge peers discover it once and then
they just reload it from cache or a file. A peer is not limited to a
single group and therefore performs this step for each group it
wants to join.
3. A peer publishes own advertisement(s), thereby announcing
its availability to provide a service to other peers. Publishing has
two types, local and remote. Local publishing puts the
advertisement in the local cache, from where it is sent out when
discovery queries arrive. In this case, it is up to the other peers to
send a query to obtain the advertisement. Remote publishing
sends out the advertisement to other peers and the rendezvous
peer. This pushes the advertisement closer to other peers, which
allows them a faster discovery. Depending on the frequency of
publishing and number of connected peers, this may turn out to be
costly in terms of network traffic and processing on the peers and
rendezvous.
4. Opening an input pipe refers to the creation of a class
instance that represents an input end of a unidirectional pipe. A
pipe end is created using a pipe advertisement, which is typically
first read from disk. These two operations are treated as a single
step because they are almost always performed together. A peer
creates a new pipe advertisement only if the old one never existed
or was destroyed. A good JXTA citizen would always reuse own
advertisements, which other peers may have already discovered
and cached. A peer would normally never retrieve its own
advertisements from the network or its own cache.
5. The step of learning about the peer group is dependent on
the actual application. For a shared computing system, it may be
important to know who is active in the group to properly
distribute load. On the other hand, for a distributed discussion
forum application [5], a peer may be interested in just any other
peer that is hosting a given forum. Although this step may not
satisfy a strict definition of “typical”, it is included for both
completeness and its high cost in case of remote discovery,
especially when a peer group is created ad-hoc, without a
rendezvous. A peer can search in own local cache for known peers
(advertisements) or query the network for remote peers.
6. Obtaining a pipe advertisement of another peer varies in
complexity and cost. In general, obtaining an advertisement is
probably the second most frequent operation executed by a peer;
the most frequent would be sending a message. A pipe
advertisement can be discovered from a network, retrieved from
the local cache, loaded from a user-specified file or URL etc.
Frequently, a pipe advertisement is embedded within another
advertisement published by a peer, such as a service or module

advertisement. It is expected that a peer would use a local cache to
save on a cost of discovering from the network, and the results
section shows the significant magnitude of this saving.
Nevertheless, it is important to obtain measurements of discovery
cost because the cache is not always an option. For example,
JXTA advertisements have an associated lifetime, so unless a
publisher refreshes an advertisement, it would be purged from
other peers’ caches, forcing them to use remote discovery.
Caching is not required by the JXTA protocols, so some peers
may elect not to implement it, due to various reasons, such as
resource constraints or security. Another reason for measuring
discovery latency in a certain JXTA deployment is to arrive at the
appropriate frequency of sending discovery queries. It would not
be desirable to have peers send queries faster than responses could
arrive. This would generate unnecessary network traffic in
duplicate queries and redundant responses, and waste CPU cycles
of requesters, responders and intermediate peers on the path.
7. Opening the output pipe means binding to the output end of
a pipe for which another peer has opened the input end. No
options are available for this step, it is required before sending a
message and it may be costly. Binding a pipe end involves
creation of connections between peers, several in case of relays,
which imply latency.
The steps discussed are typical of group-structured or hierarchical
p2p networks and systems, and also apply to the well-known file-
sharing systems [4, 14]. Since JXTA is designed and implemented
with structure in mind, especially group-based peer communities,
it is desirable that peers follow this idea.

3.2 Message Round-Trip Time
Message round-trip time (RTT) is the most common metric used
to evaluate a communication protocol or system. This paper
investigates the application-level message RTT, which is affected
by a number of important factors in JXTA. First, JXTA protocols
are XML-based, which involves an overhead in the message
composition and processing. Second, JXTA pipes present a high
level of abstraction over underlying TCP and HTTP transports.
Third, three different ways of message passing exist, unicast,
secure unicast and propagate. Four, a path between peers may
traverse one or more relays. Although the list of factors is not
exhausted, these four are discussed here.
Measurements of RTT under different conditions and peer
configurations indicate trade-offs between performance, security
and reliability. Secure pipes are expected to introduce a delay
penalty due to encryption, whereas propagate pipes by their nature
introduce higher processing cost on both edge peers and relays.
On the other hand, propagate pipes can exploit the availability of
IP multicast to improve performance by avoiding the overheads of
multiple connections associated with TCP and HTTP.

3.3 Pipe Throughput
As different layers of abstraction and overhead are introduced, the
data throughput suffers. JXTA messages include a lot of overhead
data, due to their XML-based structure and source-based routing.
The question arises whether this overhead impairs data throughput
significantly or not. Since JXTA messages do not have a size
limit, it is expected that larger messages achieve higher data
throughput. However, this depends on the message composition in
terms of number of (XML) elements and the element payload size.

Ultimately, message throughput depends on the underlying TCP
sending rate, but it is still important to know what the sending rate
limits are in terms of number of messages. Moreover, both
senders and receivers maintain message queues, which have their
own effects. The queues amortize bursty traffic and affect
reliability as messages may get dropped in case of overflow.
JXTA pipes are unreliable and only higher-level services
implement loss recovery.

3.4 Rendezvous Peer Throughput
Rendezvous peers serve several purposes and can potentially be
subject to high message load. Primarily, rendezvous peers respond
to search queries from other peers. In addition, they propagate
messages within the peer group and take part in pipe resolution.
The response time, message and query throughput and
advertisement cache management are all important performance
factors for a rendezvous peer. The effects of cache on the
rendezvous bootstrapping are briefly explored, and the full
rendezvous benchmarking is left for future work.

3.5 Relay Peer Throughput
Relay peers’ main purpose is to pass messages between peers that
cannot establish direct connection. As the number of firewalls and
NATs increases in the Internet, the connectivity becomes more of
a problem, and the role of relays becomes more important. Relays
pass messages and cache routing information, so they are
potentially exposed to large amounts of traffic. Therefore,
scalability and performance of relays dictates the size of the peer
group they can support and the message load their group can
safely sustain. Both message load and the type of pipes used for
message transfer affect the relay. In large peer networks, the
question may not be how powerful machine a relay should be, but
how many relays are necessary for making the system work.

4. RESULTS AND ANALYSIS
In this section are presented and analyzed the results obtained by
measuring the components of the proposed performance model
(Table 1). The measurements are obtained by running a series of
benchmarks. The benchmarks are designed to run at the
application level; hence they measure the application’s
“perspective” on JXTA performance. The benchmarks are
reusable for future versions of JXTA, given the stability of the

small subset of the Java implementation API. The hardware and
software running on the peers in all tests is listed in Table 2.

4.1 Peer Operations
A peer typically performs a series of steps during the course of its
lifetime in a peer network. The measurements of the time required
to accomplish these steps were taken with the goal of identifying
the cost of each step relative to other steps and the startup process.
Although the order and frequency of the steps is application-
specific, it is still worthwhile looking at some typical scenarios
and combinations of steps.
In a hypothetical scenario, an edge peer performs the given steps
once upon startup in the order shown in Figure 2. Some steps are
split into basic operations to show their relative difference in
latency. When all of the given steps are completed, a peer has
joined the group, learned about member peers and resources, and
decided with which peer it wants to interact. This scenario is in
part based on the p2p forum application from [5], and in part on
MyJXTA application [16].
Four peer configurations are compared, two for peers in ad-hoc
groups with different cache sizes, and two for peers using
rendezvous/relay at different distances, both without any extra
advertisements in the cache (Table 1). Two edge peers are used
for the ad-hoc tests, one is taking measurements and the other
provides discovery responses. A rendezvous/relay peer is added
for the additional tests; one on the same LAN, and the other 6
hops away. The remote rendezvous has a high-speed cable modem
connection to the Internet, with the average round-trip time
measured by ping tool of 67 ms, compared to less than 1 ms for
LAN traffic. Presented results are based on 10,000 measurements
of the given sequence of operations.
Bootstrapping: Assuming that a starting sequence includes a
single execution of each step, bootstrapping itself consumes most
of the total time. This step is mostly affected by the cache size and
the use of a rendezvous/relay. Connecting to the rendezvous/relay
adds the overhead of several socket connections. Depending on
the distance, the measurements show that connecting to the
rendezvous may extend the boot process by as much as 36%.
However, the cache size has much stronger effect on the
bootstrapping performance, and it is explored in more detail.
Local advertisement cache: Although local caching is not
mandated by the JXTA protocol specification [12], its benefits are
obvious when comparing the time required for retrieving local vs.
remote peer and pipe advertisements. The trade-off comes
primarily with the cost of bootstrapping. To exploit the cached
information, a peer needs to keep the cache up to date. The cache
is cleaned up during the bootstrapping, which comes at high cost.
It takes almost twice as long to start with 40 advertisements in the
cache, compared to starting with the empty cache. For

Table 1: Latency of typical peer operations (milliseconds)

Peer Configuration Boot
Get

group
Join

group
Publish

ads
Open

in-pipe
Get local

peers
Get remote

peers
Get local

pipes
Get remote

pipes
Open

out-pipe Total
No Rdv 4465.8 1257.5 3.8 80.0 16.4 58.8 404.9 25.4 221.2 159.0 6692.7
No Rdv [with 40 ads] 8218.7 1337.2 3.9 81.8 20.7 61.8 392.9 28.4 236.1 173.5 10555.0
With Rdv on same LAN 5858.3 968.7 3.9 66.5 27.0 103.6 726.0 47.6 414.7 248.8 8465.3
With Rdv 6 hops away 6074.1 1190.1 4.3 65.8 16.5 123.3 1639.2 29.8 1173.4 693.2 11009.8

Table 2: Peer hardware and software configuration

Hardware Software

PC AMD Athlon 800 MHz
512 MB RAM
100 Mbps Fast Ethernet

MS Windows 2000 SP3
JVM 1.4.1 HotSpot
JXTA Stable Release 092402

applications where peers restart frequently, the overhead of cache
maintenance may adversely affect user’s experience.
In addition, the “freshness” of the cache is indirectly affected by
the behavior of other peers, in terms of correctly specifying
lifetime of the advertisements. Peers should specify the lifetime so
that it matches both their own lifetime in the group and their
intention to periodically refresh the advertisements.
The effect of the cache size is best seen through the time it takes a
rendezvous/relay peer to bootstrap the platform with different
cache sizes (Figure 3). The bootstrap time is measured for the
cache located NFS and on local disk. Note that the growth of
values for NFS is at much higher rate than for a local disk. For a
rendezvous peer starting with 1000 advertisements, the cost of the
NFS is prohibitively high. For example, in a campus environment,
where users of computer labs are forced to use the NFS, it may
not be desirable to configure a peer to act as a rendezvous if the
advertisement traffic is high.
Joining a group: The process of joining was measured separately
for creation of a group and the actual join operation by invoking
the required methods. The join in this test uses an empty
credential, which essentially means that a peer is joining an open
group. That is why the join is so fast compared to the group
instance creation. A peer may join using an LDAP authentication
or some other mechanism, which would likely take more time, but
this test is performed around the minimal required operations.
Note that the group creation involves retrieval of the group
advertisement from cache and creation of the group object, which
sets up the environment for the group inside the JVM. This is the
second most expensive operation overall and that is an issue of
concern for applications in which peers change group membership
often and participate in several groups simultaneously.
Discovery of the group resources: The remote discovery of both
peers and pipes (or any other resources) is an order of magnitude
slower than retrieval from local cache (Table 1). Note that the
results in this test present the time until the first discovery event,
which certainly does not mean that this event would give a full
picture of the discovered resources in the peer group. Depending
on the group size, a peer may wait for a long time to collect the
advertisements from all active peers, and it can never be sure that
all peers responded. The question arises what is to be done in case
a peer cannot rely on the cache to provide the accurate
information. In this case, a rendezvous peer should be able to
provide an accurate picture of the peer group, at least in terms of
the active peers, not necessarily other resources. The cost of
retrieving the information from the rendezvous is higher,

assuming it is possible to always have one available. A connection
to the rendezvous increases startup time, consumes resources by
keeping the connections open and the exchange of messages is
somewhat slower, since these connections use TCP or HTTP,
whereas ad-hoc connections rely on UDP. Placing a rendezvous
as close as possible to the edge peers, in terms of network
distance, ideally on the same LAN, can minimize the messaging
cost (Table 1). However, although it takes more time to retrieve
the information from the rendezvous peer, this information is
expected to be complete. The overhead is certainly worth it if the
application requires that peers have updated information about the
group.
Opening output pipes: To open a pipe, its name must be resolved
to an endpoint, possibly using a rendezvous and a relay, and it is
strongly dependent on the network distance between peers.
Combined with the remote advertisement discovery, it turns out
that connecting two peers on a LAN may take in excess of 600
ms; across the Internet several seconds. Developers should
therefore try to reuse both the advertisements and open pipe
handlers, whenever possible. Savings by reuse are higher if peers
cannot connect directly and must use a relay as an intermediary.
Publishing advertisements: The results from Table 1 indicate that
the last step in this discussion is certainly not the least important.
The apparent low cost of this operation does not mean there is
nothing to discuss, because there is no significant cost. On the
contrary, this step may have a significant impact on the peer
community as a whole. By publishing the advertisements, a peer
really pushes the information about itself closer to the potential
users, which is one of the foundations of the concept of peer-to-
peer computing. Published advertisements are sent to the
rendezvous and, depending on the network and transport
configuration, to other peers in the group as well. If a rendezvous
does not have the desired advertisements, it must contact all other
peers before it can respond. So by publishing, a peer both raises
the awareness of other peers about the available resources and
saves them on cost of discovery. When used properly with tuned
advertisement lifetime settings, performing this step goes a long
way towards a more efficient peer network.

4.2 Message RTT
The measurements of the message RTT were obtained in a setup
of two edge peers and if required, one relay, all on the same LAN.
The RTT represents the time elapsed between the send request
and the receipt of the acknowledgment at the sender. The
messages are sent sequentially, and each message includes the
sender’s pipe advertisement and the message sequence number for
the total of 316 bytes. It is actually very common that a JXTA
peer sends own pipe advertisement inside the message, so that a
receiver may respond. Processing is minimized at the receiver by
reusing the open response pipe. The tests are performed in various
configurations to show the effects of type of pipe, message size
and composition, transport protocols and relays. All results are
based on 10,000 acknowledged messages with 1,000-message
warm-up period.

4.2.1 RTT and Message Size
The objective of this test is to understand how different types of
pipes behave over the range of message sizes. Each message
contains a single payload element of size ranging from 1 KB to 10
MB. The messages were exchanged between two peers using a

9

31
14

193

1

10

100

1000

1 10 100 1000
Cache size

St
ar

tu
p

tim
e

(s
ec

)

Local
NFS

Figure 3: Peer startup time for different cache sizes

direct TCP connection. Figure 4 shows the average RTT of three
types of JXTA pipes for each of the message sizes (both axes are
log scale).
Each pipe exhibits slow, close to linear increase in RTT from 1
KB to 100 KB, unicast pipe even to 1 MB. Between 100 KB and
10 MB, the message RTT over the secure and propagate pipes
increases at a different and much higher rate, but it seems to also
follow a linear trend. The increasing rate for unicast pipe from 1
MB to 10 MB closely follows the rate of other pipes, but it is hard
to conclude what would be its possible ongoing trend. It is
certainly desirable that message RTT over any pipe increases at
most linearly over message sizes. The graph of the maximum RTT
(not shown) looks very similar to the graph of the average RTT.
By relative comparison, the propagate and secure pipes differ in
the order of magnitude consistently, whereas unicast pipe
performs closer to secure for smaller messages, but converges
with propagate pipe for larger sizes. This indicates better scaling
properties of the unicast pipe over TCP up to the 10 MB message
size.
The results for the larger message sizes are not available because
it was not possible to transfer messages of 100 MB and larger in
our setup, regardless of the abundance of memory or tuned JVM
setting. The maximum message sizes successfully transferred at
least once were 86 MB over unicast, 97 MB over secure and 29
MB over propagate pipe.

4.2.2 Effects of Relays and Transports on RTT
JXTA peers can be configured to use TCP, HTTP and UDP in any
combination. TCP is used whenever a direct connection between
peers can be established. HTTP is used when a firewall or NAT is
on the path or a peer specifically wants to use a relay, and UDP is
exploited in the form of IP multicast for efficient propagation of
messages on a subnet. The measurements of the RTT in different
peer configurations and on different transports are shown in
Figure 5. The messages in this test contain one payload element 1
KB in size.
In the Direct TCP/UDP configuration, two peers connect directly
without any rendezvous or relay. Propagate pipes show much
better performance because the peers use available IP multicast.
In the second configuration, two peers use a relay on the same
LAN, all configured to use both TCP and HTTP, with multicast
disabled. The RTT for unicast pipe, which is almost the same as
for the direct TCP connection, indicates no significant effect of
the relay. The secure and propagate pipes show higher latency

when using a relay, as expected. While the increase in latency
over a secure pipe is moderate, it quadrupled for propagate pipes.
This large increase for propagate pipe is affected mostly by
removing multicast.
The third configuration reveals more interesting results. Here the
peers use only HTTP to communicate with the relay. Unicast
pipes perform much better here than in other configurations,
which is quite unexpected, considering overhead of HTTP and a
relay. Similar result was obtained for propagate pipe, but the
difference is minor compared to the second configuration. Secure
pipe is slower as expected, again by a moderate amount.
Finally, the two-relay configuration is set up so that relays have
both TCP and HTTP enabled, and edge peers use only HTTP to
connect to one relay each. The relays pass messages between each
other on behalf of their attached edge peers. Secure pipe gets
uniformly slower through the configurations as expected.
Compared to the configuration with HTTP and one relay, unicast
and propagate pipes also show higher latency, as expected.
However, when compared over all four configurations, unicast
pipe performs almost equally throughout except in a single relay
setup with only HTTP transport. Propagate pipe, on the other
hand, suffers most from the additional relay, passing messages
twice as slow as with a single relay. Overall, a single HTTP relay
costs 4 times, and two relays 8 times more than IP multicast for
propagate pipe.

4.2.3 RTT and Message Composition
The following test looks for difference in performance of pipes
depending on the number and size of the message elements they
carry. Four variations of a 20KB message were used: 1x20KB (1
element of size 20KB), 5x4KB, 10x2KB and 20x1KB.
Figure 6 shows that the performance of secure pipes is very much
affected by message composition. On the other hand, there is less
effect on unicast and propagate pipes, but it does exist. Increasing
the number of elements from 1 to 20, while reducing their size,
more than doubles the average RTT on a secure pipe. For unicast
pipe, the increase in RTT over four combinations is 24%, and for
propagate pipe about 43%. This effect of message composition is
not very surprising, considering that messages are XML
documents and the complexity of document structure affects the
processing time. In addition, using more message elements to
transfer the same amount of payload (in bytes) increases the
overall message size by additional XML element tags, but this is
not a very significant factor for smaller messages. In case of
secure pipes, the encryption cost rises rapidly with increasing

1

10

100

1,000

10,000

100,000

1 KB 10 KB 100 KB 1 MB 10 MB

Message size

Av
er

ag
e

R
TT

 (m
s)

Unicast
Secure
Propagate

Figure 4: Average message RTT for

various message sizes

0

50

100

150

200

250

300

350

Direct
TCP/UDP

1 Relay -
TCP/HTTP

1 Relay -
HTTP

2 Relays -
HTTP

Netw ork Configuration

Av
er

ag
e

R
TT

 (m
s)

Unicast
Secure
Propagate

Figure 5: Average message RTT for various

transports and relay configurations

0

100

200

300

400

1x20KB 5x4KB 10x2KB 20x1KB

Message composition

Av
er

ag
e

R
TT

 (m
s)

Unicast
Secure
Propagate

Figure 6: Average message RTT for
various message compositions

amount of data. Therefore, the composition of messages is yet
another variable to consider when designing a JXTA-based
system.

4.3 Pipe Message and Data Throughput
JXTA pipes are by definition unreliable, and this lack of
reliability is largely reflected by the queuing policy. All messages
are queued before actual sending at the sender’s side, as well as
on the receiver’s side before delivering to the application layer. If
the queue is full, the oldest message is discarded to make room for
the new one. Since JXTA pipes use TCP and HTTP, they tend to
be reliable, only the propagate pipe lacks reliability with IP
multicast, but it behaves same as the other two types when
multicast is not available.

4.3.1 Pipe Message Throughput
The test of pipe throughput measures the limits of reliable transfer
in JXTA terms, meaning that no messages are dropped. Both
sender and receiver rates are included. The most interesting
feature exhibited by unicast and secure pipes is the limited
sending rate, regardless of the attempted rate. The sending rates of
up to 300 messages per second (msg/sec) were attempted, but they
were capped at levels shown in Figure 7. For unicast pipes, the
maximum sending rate measured at 115 msg/sec for 1 KB, and 97
msg/sec for 10 KB messages delivered at smooth rate by the
application. Under the same conditions, a secure pipe sends at
about 23 msg/sec for both 1 KB and 10 KB messages. The unicast
and secure pipe implementations achieve the sending rate limits
without dropping messages. In addition, the sending queue
amortizes the bursty message delivery by the application very
well, again without drops. The bursty traffic in the test for unicast
and secure pipes consisted of 50-message bursts and 500 ms sleep
time. No significant difference was observed between the rates for
1 and 10 KB message (under 4.6%), meaning that it is the number
of message, not the number of bytes that affects the sending rate.
For propagate pipes, the sending rate of about 20 msg/sec is both
the maximum no-loss rate and the rate that an application should
attempt. Higher sending rate causes messages to be dropped from
the sender’s queue. The almost non-existent value for bursty
traffic a propagate pipe can sustain indicates the failure to
accommodate any significant burstiness. At most 2-message
bursts followed by an idle period resulted in maximum rate
without drops at the sender, but still had a small drop rate at the
receiver.
The obtained results for limits on sending rate are useful for both
the simulation of JXTA networks and the design of JXTA

applications. For example, for a given number of peers in a group,
it is possible to calculate the maximum message load peers can
produce. In the simulation, given the network load, it is possible
to calculate the number of peers required to generate the wanted
traffic.
On the receiver side, no message drops were recorded for
maximum sending rates over unicast and secure pipes. For
propagate pipe, significant drop rates were recorded, depending
on the sending rate, message size and burstiness. An attempt to
send at the rate of 200 msg/sec over a propagate pipe translated
into a 42.9% message loss over a session of 10,000 messages.
When sending at the rate of 20 msg/sec, the loss was ranging from
zero to 23.95% over 10,000 messages for different message sizes
and burstiness, in an inconsistent fashion. The only conclusive
behavior from the measurements is that the propagate pipe always
performed without loss at smooth sending rate of 20 msg/sec.

4.3.2 Pipe Data Throughput
Considering a relatively low no-loss rate in msg/sec, it is
important to look at its impact on the data throughput of JXTA
pipes. As Figure 8 shows, it is not surprising that larger messages
achieve higher throughput, because the number of messages is the
limiting factor, not the size. At the same time the difference
between the raw vs. data throughput is recorded. Data throughput
measures the actual payload transmitted in the message, and it is
considered an important metric in the performance evaluation of
distributed object architectures [10].
The control information in a JXTA message may account for a
significant portion of the overall volume of bytes transmitted. This
is clearly shown by the impact the extra information has for
smaller messages, such as 1 KB, compared to large payloads of 10
KB. In Figure 9 are shown the fractions of the throughput that are
actual payload data. For 10 KB payloads, the overhead data is
under 20%, whereas for small messages carrying 1 KB payload,
the overhead may account for up to 60% of the message. It is
noticeable that propagate pipes have the highest overhead over
TCP connection, and unicast pipes the lowest.

4.4 Relay Message Throughput
Relays are necessary to connect the pipe ends between peers and
they introduce the overhead of communication by adding the
processing cost and extending the pipe length. The relay
throughput test measures the receiving rate of messages, given
some sending rate and the message path through relay. The
expected lower receiving rates can quantify the overhead a relay
imposes on pipe throughput.

0

20
40

60

80

100
120

140

Smooth Bursty Smooth Bursty

1 KB 10 KB

Se
nd

in
g

ra
te

 (m
sg

/s
ec

) Unicast
Secure
Propagate

Figure 7: Pipe maximum sending rate

0
1
2
3
4
5
6
7
8
9

1 KB 10 KB 1 KB 10 KB 1 KB 10 KB

Unicast Secure Propagate

Av
er

ag
e

th
ro

ug
hp

ut
 (M

bp
s) Data

Raw

Figure 8: Average pipe throughput

between two peers

0

0.2

0.4

0.6

0.8

1

Unicast Secure Propagate

Pipe type

D
at

a
fra

ct
io

n
of

 th
ro

ug
hp

ut 1 KB
10 KB

Figure 9: Payload data as a fraction
of total throughput

The setup of this test consists of two HTTP edge peers connected
to the relay, all on a LAN. The messages are sent from one peer to
the other over all types of pipes. The message throughput is
measured for no-loss transmissions and shown in Figure 10 (note
that x-axis is not linear scale).
The throughput increases at a very similar rate for all pipe types,
indicating the strong and consistent effect of the relay. The
receiving rates are closely related to the relay’s output rates and
they are lower than for the direct peer connection. The maximum
receiving rate through the relay was measured at 67 msg/sec for
unicast, and just over 9 msg/sec for secure pipe. These results
represent up to 41% and 60% reduction in message throughput for
unicast and secure pipe over the direct TCP connection,
respectively. The smallest effect is seen on propagate pipes, which
still keep their throughput at about 20 msg/sec. However, if the
sender is configured to use both TCP and HTTP, the rate almost
doubles for propagate pipes, but with a large number of out-of-
order messages at the receiver.
All types of pipes exhibit the optimal transmission rate,
represented by the sharp cut-off in the graph. An attempt to send
at a higher rate results in a slightly lower receiving rate, likely due
to overloading of the relay.
Only throughout this test, the relay consistently failed, apparently
due to overloading. The transmission would suddenly fail after
about 3900 messages over unicast, 2800 over secure, and 2100
over propagate pipe. The repeated runs would result in failures at
almost the same message counts. The speculated reason for this
would be the problems in resource usage at the relay, in particular
the creation of excessively high number of new HTTP
connections to the receiver, possibly for each transmitted
message.

5. RELATED WORK
The peer-to-peer approach has gained significant success and
popularity in recent years, mostly due to several widespread types
of application: instant messaging (IM), file sharing and
collaboration. Most of the p2p applications have a very specific
way of dealing with peer and resource discovery, communication
and resource sharing. On the other hand, JXTA primarily provides
standard protocols and tools to build interoperable p2p
application regardless of their type. A related effort to standardize
the protocols for one type of application is Jabber [8]. Jabber
defines the open-standard protocol for message exchange, offering
extensible and decentralized IM solutions. Gnutella and FastTrack
[14] offer their own protocols for worldwide file sharing, using
hierarchical network with super-peers to facilitate search and

discovery. In the lower-level distributed object world, CORBA
represents a solution for heterogeneous object registration and
discovery, and remote method invocation.
Solutions for efficient large-scale object location and routing are
provided in the form of application-independent protocols, such
as CAN [21], Pastry [3] and Tapestry [15]. These protocols are
based on distributed hash tables (DHT) and they can be used to
build application-level multicast [3], distributed file storage [15]
and cooperative web caching [7]. The DHT protocols fit on top of
JXTA as higher-level services. They could provide a more
efficient search mechanism, while exploiting the lower-level
resource discovery features of JXTA [26]. Business-oriented
systems, such as Web Services, are based on open standards of
XML, SOAP and WSDL [6], in which centralized UDDI
directories facilitate the search, but they do not support dynamic
discovery and concept of group organization.
Some of the existing p2p solutions are not built with high
performance and scalability in mind [21, 22]. This has prompted
research into the performance, scalability and characterization of
p2p systems. Such work includes analytic and simulation-based
performance modeling [13] and measurement studies based on
network crawling and traffic tracing [22, 24] of Gnutella network.
The traffic characterization study was based on a campus-level
trace of several content delivery networks [23]. The available
results show a large heterogeneity of peers in terms of network
bandwidth, lifetime, amount of shared data and willingness to
cooperate. Such findings demand that future p2p applications and
protocols, including JXTA, be designed to provide good
performance, high scalability, and adaptation to heterogeneous
environment.
Performance measurements are available for components of early
releases of JXTA, and mostly in the context of a particular
application. A higher-level JXTA service, the JXTA-wire (many-
to-many pipe) was evaluated for support of Type-based Publish-
Subscribe approach for building p2p applications [2]. The JXTA
propagate pipe was compared to the alternative solution for high-
speed communication within peer groups [9]. In the previous
work, the peer discovery and unicast pipe performance in the
context of a p2p forum system were investigated [5].
Earlier results indicate that a broad and more detailed
performance study is needed. The JXTA community initiated a
dedicated Bench sub-project, with a purpose to collect
performance and scalability measurements as the platform
development progresses [11]. The results of the various
measurements are published on the project web site in the form of
time-series graphs and progress summary. The majority of the
information is provided in absolute numbers, most appropriate for
the platform developers. The emphasis is currently put on the
measurements of the pipe throughput and rendezvous search and
discovery performance, showing progress over JXTA releases.
The test results are from the controlled environment. The Bench
project provides the evaluation JXTA pipes in more detail,
considering differences in type of pipes, earlier JXTA versions
and the operating system [25].
The work and results presented in this paper are intended to
complement the existing efforts, and extend them in terms of more
detailed examination of JXTA components. The development of
the benchmark suite and collection of results provides indication
of the areas that need improvement in JXTA and guidelines for

0

15

30

45

60

75

5 10 15 20 25 30 40 50 75 100 200

Sending rate (msg/sec)

R
ec

ei
vi

ng
 ra

te
 (m

sg
/s

ec
)

Unicast

Propagate w /TCP

Propagate

Secure

Figure 10: Maximum receiving rate through relay peer

system designers to build better p2p applications. Although the
discussed measurement methods and tools are presented in the
context of JXTA, they are also applicable to any current or future
structured hierarchical p2p systems.

6. CONCLUSION
This paper discussed the performance issues of the JXTA platform
and presents the performance model and the benchmarking results
for the reference implementation. The results are obtained from
JXTA peer configurations on a single LAN, in almost all tests.
The absolute measurements obtained are therefore most applicable
to the enterprise deployment of JXTA. Nevertheless, it is expected
that the general characteristics of JXTA components observed and
their relative comparisons would translate to the wide-area
deployment.
This study investigates typical peer operations, local cache and its
underlying file storage, pipe and advertisement reuse, and various
messaging parameters. The obtained results show high cost of the
JXTA bootstrapping process relative to other operations, with the
major factor being local cache management. In particular, the
significant negative impact of NFS is noted. Local cache, on the
other hand, allows for significantly faster gathering of information
about the peer group resources, especially when combined with
the disciplined advertisement publishing. The high cost of pipe
binding strongly suggests the reuse to developers.
The relative performance cost of different types of pipes is
analyzed in respect to message size and composition, network
transports and relays. The most important observations are the
good scaling properties of message RTT over various message
sizes, sending rate limits and the limits of reliable message
throughput. The significant impact of relays on message RTT
throughput and reliability is also measured.
With the presented results, it is possible to derive some guidelines
for the developers of distributed applications based on JXTA. For
example, relatively low message throughput combined with the
effects of message composition and its structure overhead
suggests that it is more efficient and safer to transmit moderate-
sized messages and minimize the traffic. File-sharing applications
could benefit by carefully choosing the most efficient transfer
fragment size. It further seems important to reduce the number of
relays on the message path as much as possible. This result
indicates that peers from separate networks should pick one relay
from one of the networks, rather than having a separate relay in
each network. Deeper analysis and derivation of recommendation
and guidelines should provide more valuable results, and it is left
for future work.
By performing the evaluation of JXTA components on a LAN,
only a part of needed testing and benchmarking was tackled.
Areas of future work include primarily scalability evaluation of
large peer groups, in terms of messaging through relays and
discovery on rendezvous peers. For JXTA pipes, the throughput
with multiple senders for unicast and secure, and multiple
receivers for propagate pipe should be measured and compared to
one-to-one communication. In addition, the testing of all
components on a wide-area configuration would be necessary to
complete the performance and scalability picture of JXTA.

7. REFERENCES
[1] Altman, J. PKI Security for JXTA Overlay Networks, IAM

Consulting, Inc., http://www.jxta.org/docs/pki-security-for-

jxta.pdf.
[2] Baehni, S. et al. OS Support for P2P Programming: a Case

for TPS. in ICDCS 2002 (Vienna, Austria, 2002).
[3] Castro, M. et al. Scribe: A large-scale and decentralized

application-level multicast infrastructure. IEEE Journal on
Selected Areas in Communications, 20 (8). 1489-1499.

[4] Gnutella.com, http://www.gnutella.com/.
[5] Halepovic, E. et al. Building a P2P Forum System with

JXTA. in P2P '02 (Linköping, Sweden, 2002).
[6] Hoschek, W. The Web Service Discovery Architecture. in

IEEE/ACM SC 2002 (Baltimore, USA, 2002).
[7] Iyer, S. et al. SQUIRREL: A decentralized, peer-to-peer

web cache. in PODC 2002 (Monterey, CA, USA, 2002).
[8] Jabber Software Foundation, Jabber, Inc.,

http://www.jabber.org/.
[9] Junginger, M. et al. The Multi-Ring Topology - High-

Performance Group Communication in Peer-to-Peer
Networks. in P2P '02 (Linköping, Sweden, 2002).

[10] Juric, M.B. et al. Performance assessment framework for
distributed object architectures. Advances in Databases and
Information Systems, 1691. 349-366.

[11] JXTA Bench Project, http://bench.jxta.org/.
[12] JXTA v2.0 Protocols Specification, http ://spec.jxta.org/

nonav/v1.0/docbook/JXTAProtocols.html.
[13] Kant, K. et al. A Performance Model for Peer to Peer File

Sharing Services, Intel Corporation,
http://citeseer.nj.nec.com/kant01performance.html.

[14] KaZaA, Sharman Networks, http://kazaa.com/.
[15] Kubiatowicz, J. et al. OceanStore: An architecture for

global-scale persistent storage. ACM Sigplan Notices, 35
(11). 190-201.

[16] MyJXTA2 Enterprise Edition,
http://myjxta2.jxta.org/servlets/ProjectHome.

[17] Nejdl, W. et al. EDUTELLA: Searching and Annotating
Resources Within an RDF-based P2P Network. in Semantic
Web Workshop (Hawaii, 2002).

[18] Project JXTA Community Home Page, http://www.jxta.org/.
[19] Project JXTA Solutions Catalog, http ://bench.jxta.org/

project/www/ Catalog/index-catalog.html.
[20] Project JXTA:Java™ Programmer ’s Guide, Sun

Microsystems, Inc.,
http://www.jxta.org/docs/jxtaprogguide_final.pdf.

[21] Ratnasamy, S. et al. A scalable Content-Addressable
Network. Computer Communication Review, 31 (4). 161-
172.

[22] Ripeanu, M. et al. Mapping the Gnutella Network. IEEE
Internet Computing, 6 (1) 2002, 50-57.

[23] Saroiu, S. et al. An Analysis of Internet Content Delivery
Systems. in OSDI '02 (Boston MA, USA, 2002).

[24] Saroiu, S. et al. A Measurement Study of Peer-to-Peer File
Sharing Systems. in MMCN '02 (San Jose CA, USA, 2002).

[25] Seigneur, J.-M. Jxta Pipes Performance,
http://bench.jxta.org/papers/jmjxtapipesperformance.pdf.

[26] Traversat, B. et al. Project JXTA Virtual Network, Sun
Microsystems, Inc., http: //www.jxta.org/project/
www/docs/JXTAprotocols_01nov02.pdf.

[27] Verbeke, J. et al. Framework for Peer-to-Peer Distributed
Computing in a Heterogeneous, Decentralized Environment,
Sun Microsystems, Inc.,
http://www.jxta.org/project/www/docs/mdejxta-paper.pdf.

