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ABSTRACT 
Project JXTA is the first peer-to-peer application development 
infrastructure, which includes standard protocols and multi-
language implementations. The performance and scalability of 
JXTA are not well understood, despite its widespread usage in the 
research community and increasing popularity in the industry.  
This paper proposes a JXTA performance model and presents 
results obtained by benchmarking JXTA components. The results 
show the performance characteristics of the current JXTA 
reference implementation from a peer perspective. Important 
performance issues and trade-offs are identified and discussed, as 
a basis for the formulation of guidelines for system designers and 
simulation-based research of JXTA networks. 
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1.  INTRODUCTION 
Peer-to-peer (p2p) systems in general are characterized by 
decentralized control, high autonomy of participating nodes and 
heterogeneity in terms of processing power and shared hardware 
and software resources. Such systems are attractive for several 
reasons; among the most important are the lack of centralized 
control and a single point of failure, and the potential to scale to 
very large sizes.  
Project JXTA [18] has joined the peer-to-peer family with a novel 
approach. Instead of providing a solution for a specific p2p 
application domain, JXTA offers generic building blocks for the 
development of any type of p2p system, from collaboration to 
parallel computation [16, 27]. JXTA defines protocols for core 
p2p operations, such as discovery, messaging and group 
organization. Over two years of development in an open-source 
community have produced a solid API, largely tested in academic 
environment as a platform for prototyping various p2p concepts. 
Current statistics indicate that the JXTA community has grown to 
almost 13,000 members, with up to 20,000 downloads per week 
[18]. The existing applications of JXTA range from RDF-based 
resource discovery and retrieval [17], to p2p discussion forums 
[5]. The popularity of JXTA has spread into the market 
environment and some commercial products are already available 
[19]. However, the performance and scalability of JXTA are not 
well understood.  
This paper will provide performance results of core JXTA 
components to both the research and developer community, as 
well as identify the components of a JXTA performance model. In 

a sense, this work represents a peer-centric view of the 
performance of JXTA. Specifically, message round-trip time 
(RTT), data throughput, and effects of various network and 
transport configurations are investigated. The results presented are 
useful for several purposes. First, the JXTA platform developers 
would benefit from establishing baseline performance results for 
the version 1.0 of the JXTA protocols implementation, as version 
2.0 is being introduced. Second, the designers and users of p2p 
systems based on JXTA need to know the performance limits of 
their products, and need the guidelines to improve design and 
implementation. Finally, the p2p research based on simulation is 
provided with realistic parameters obtained from the real-life 
experiments. 
This study is based on the latest and final stable release of JXTA 
1.0 implementation for Java 2 Standard Edition (J2SE). The 
earliest stage of the work involved a design and implementation of 
the benchmark suite for evaluating JXTA components. The 
benchmarks are designed at the application level, so that they are 
reusable for future work on evaluating new JXTA versions. 
The rest of the paper is organized as follows. Section 2 gives an 
overview of the JXTA platform. Section 3 describes the 
performance model of JXTA components and Section 4 presents 
the analysis of performance results. Related work is described in 
Section 5, and conclusions are given in Section 6. 

2. JXTA OVERVIEW 
Project JXTA is the first attempt to formulate core p2p protocols, 
on top of which interoperable p2p applications could be built 
[26]. Standardization of the common protocols would allow for 
easier interaction between heterogeneous peers. A lot of effort in 
the past years has gone into the implementation of application-
specific protocols, such as for file sharing, instant messaging or 
collaboration. Standard protocols would provide the basic 
functionality for peer and resource discovery, communication and 
organization, which are necessary for all p2p applications. The 
details of JXTA protocols are provided in [12].  
As a set of protocols, JXTA is independent of any programming 
language, operating system, device or underlying network 
transport [26]. JXTA is developed as an open-source effort, and 
uses open standards as its interoperability foundation, which is 
best represented by its dependability on XML. The reference 
implementation is available in Java language and C, Python, Perl 
and other language implementations are provided as community 
projects [18].  
In general, p2p applications must handle intermittent connectivity, 
dynamic IP addresses and an unstable network topology. 
Therefore, the developers face a challenge of designing 
applications that are independent of DNS and IP addressing and 
identification. This is why JXTA introduces a virtual network 



layer, on top of the existing transport protocols, with its own 
addressing and routing, facilitating interaction in this dynamic 
environment [26]. This virtual network is able to cross barriers 
like firewalls and Network Address Translation (NAT), and 
establish peer communities spanning any part of the physical 
network.  
The main concepts in JXTA are described in the following 
sections, with reference to the example in Figure 1, where a 
network of five peers is shown.  The following scenario is 
assumed: peer A provides a weather forecast service, and peer B 
needs to discover it and request the current forecast report.  

2.1 Peers and Peer Groups 
The JXTA virtual network consists of several kinds of peers [20]. 
Most of the peers are simple or edge peers, usually desktop 
computers connected by a LAN or modem to the Internet, such as 
peers A, C and D. Small devices, such as peer B, are minimal 
peers, since their resource constraints would most likely disallow 
full functionality. They use help from the proxy peers (e.g. peer 
B), for caching, search and discovery. Rendezvous peers are 
usually more powerful peers, with well-known DNS name or 
stable IP address, and they act as caches of information about the 
connected peers. Relay peers have a special role to learn and 
provide routing information and pass messages between peers 
separated by firewalls and NAT. In Figure 1, peer R acts as both 
relay and rendezvous.  
Peers organize into peer groups and all communication is 
constrained to the group members. Peer groups are not limited to 
the physical network boundaries. In the network from Figure 1, 
peer D does not receive messages from group G, because it is not 
a member, although it may use the same rendezvous or relay.  

2.2 Advertisements 
All entities in JXTA, including peers, groups, pipes and services, 
are represented by advertisements, which are XML documents of 
a well-defined format [12]. Advertisements carry a unique random 
ID number of the resource or entity they represent, and optional 
additional information, such as human-readable names and 
descriptions. Peers use advertisements to learn about other peers 
and services they provide. Advertisements have a lifetime, after 
which they are considered stale and purged. A publisher peer is 
responsible for “refreshing” or republishing its expired 
advertisements. The lifetime mechanism is important for 
automatic repair of the network, in case of peer departures and 
failures. A major peer operation is to purge its local cache of stale 

advertisements upon startup. This prevents a peer from attempting 
to access non-existent peers and services. Peer A from Figure 1 
publishes its weather forecast service advertisement, which other 
peers cache for a specified lifetime. During this lifetime, potential 
consumer peers, such as peer B, can find the service and access it. 
After the lifetime has expired, peer A should republish the service 
advertisement. If peer B joined the network after the 
advertisements was published, it can search and discover the 
advertisement from the network. 
Publishing, discovery and exchange of advertisements is an 
essential step in the process of connecting a JXTA peer network. 
Efficiency of the advertisement processing and management 
impacts the performance of operations on the resources 
represented by advertisements. 

2.3 Pipes and Messages 
JXTA pipes are a fundamental abstraction used for inter-peer 
communication. JXTA peers pass messages through pipes, virtual 
channels that consist of input and output ends. Peers bind to one 
end of the pipe and when both ends are bound, messages can be 
passed. Pipes are not bound to the physical location, IP address or 
a port. Instead, pipes have a unique ID, so each peer can carry its 
pipe with itself even when its physical network location changes. 
At runtime, a pipe end is resolved to an endpoint address to which 
it is currently bound.  
In Figure 1, peer A must open a pipe input end to receive forecast 
service requests, and publish the pipe’s advertisement, either 
separately or embed it with the forecast service advertisement. 
This tells other peers where to connect if they want to send a 
request. At runtime, peer B obtains the pipe advertisements, and 
queries the network for the peer who has opened the pipe input 
end. Once peer A has responded, peer B can open the pipe output 
end and send the request.  
Pipes are unidirectional and unreliable by definition, but bi-
directional and reliable services are provided on top of them. Two 
operation modes of pipes are defined: unicast and propagate. 
Unicast pipes serve for one-to-one communication, connecting 
two peers. Propagate pipes connect one sender peer to many 
receiving peers. Pipes are asynchronous, and message elements 
such as unique IDs are used for sequencing. 
JXTA messages are XML-documents composed of well defined 
and ordered message elements [12]. The elements are name-value 
pairs, and they can carry any type of payload. JXTA uses source-
based routing and each message carries its routing information, as 
a sequence of peers to traverse. The peers along the path update 
this information. The routing elements tend to get large, primarily 
due to the 256-bit peer ID [12], composed of the own and the 
group ID. This implies that even an “empty” message, with no 
application-specific payload, can easily reach 1 KB in size, 
affecting the performance of message exchange. 

2.4 Rendezvous and Relay Peers 
To support resource binding and the exchange of messages across 
networks and firewalls, two special concepts exist in JXTA: 
rendezvous and relay peers. Rendezvous peers agree to cache 
advertisements for their peer group, propagate messages and 
scope the advertisement query recipients. Rendezvous peers also 
provide a common location for peers from separate networks to 
exchange advertisements. They facilitate search and discovery and 
provide resolving operations, such as peer name resolution to an 

 
Figure 1: JXTA peer network 



IP address [26]. Peer R acts as a rendezvous peer for group G in 
Figure 1. When peer A publishes the service or pipe 
advertisement, peer R propagates it to the other group members. 
When the peer B searches for the forecast service, peer R 
responds with matching advertisements or propagates the query to 
other peers, if no matching advertisement is found in its cache.  
Relay peers, on the other hand, store routing information. 
Although JXTA messages contain routing information, relays are 
used when communication has to pass through a firewall. Relay 
peers can also spool messages for unreachable peers and serve as 
bridges between physical networks [26]. For example, since peers 
A and B are on different networks, they need relay R to pass 
messages between them. Any JXTA peer can become a relay or a 
rendezvous, but this usually depends on hardware and bandwidth 
constraints and security policies. Enterprise installations behind a 
firewall or NAT usually expose one public rendezvous/relay for 
connections from outside peers. 

3. PERFORMANCE MODEL 
As a distributed and network-centric architecture, JXTA is 
evaluated primarily through its features of peer connectivity, 
communication and scalability. The connectivity and 
communication performance of JXTA are explored through a 
model consisting of the following components and metrics: 

o Latency of typical peer operations 
o Message round-trip time (RTT) 
o Pipe message and data throughput 
o Rendezvous peer query and response throughput 
o Relay peer message throughput 

These components and metrics are discussed and evaluated 
through their role in successful and effective deployment of a 
JXTA-based system. The benchmarks, metrics and discussion 
presented should also be applicable to any structured hierarchical 
p2p network, even the well-known popular file-sharing networks 
[4, 14]. 

3.1 Typical Peer Operations 
A JXTA peer needs to perform a series of steps (operations) to 
join and participate in a JXTA network (Figure 2). Depending on 
the application and type of peer (edge, rendezvous or relay), the 
number and order of these steps may vary. The steps are dictated 
by the modular design of JXTA protocols and their 
implementation. Even the simplest peer operations are 
implemented with a high level of abstraction. It is expected to find 
a high performance penalty associated with layers of abstraction, 
especially in terms of latency and response delay. In addition, a 
peer may repeatedly and frequently perform some operations, 
which then aggregate to a large performance cost. 

From the performance perspective, a developer would be 
interested in the cost of these operations due to at least two 
reasons, (1) high-cost of basic operations involved to complete a 
step, and (2) frequency of steps or operations performed. Note 
that most of the high-level steps are actually sets of distinct 
individual operations that a peer application may repeatedly 
perform during its lifetime, but the cost of a single step execution 
is measured for this study. In addition, the actual operations may 
be executed in different ways depending on the circumstances, but 
only the typical combination that a single step goes through is 
considered. The decision on what is considered typical has been 
strongly based on two applications: a p2p forum system [5] and 
MyJXTA [16]. 
The typical high-level steps and their basic operations are 
presented in the relative order a peer performs them (Figure 2):  

1. Bootstrap the JXTA platform. 
2. Join a peer group, according to user preferences or 

common peer services, and to enjoy a more secure and 
efficient environment. 

3. Publish own advertisements, to make peers aware of 
our presence and available resources. 

4. Open an input pipe, to receive messages from peers. 
5. Learn about other peers, who participate in the same 

group and share common resources. 
6. Obtain pipe advertisements to interact with other peers. 
7. Open output pipe to send messages to other peer. 

 
1. Bootstrapping the JXTA platform loads a large class library, 
which may involve access to the local disk, network file system 
(NFS) or maybe even the Internet. This step builds the data 
structures to support the JXTA platform, cleans-up local cache 
and opens listener sockets, which are all time-consuming 
operations. Section 4.1 will show that bootstrapping is indeed 
very costly, compared to other steps, which could become an issue 
for peers with constrained resources. 
During the bootstrap, all peers join the default hard-coded peer 
group, which is a universal worldwide peer group. Peers may 
choose to stay in this group, or join other groups. An edge peer 
also connects to the rendezvous and relay peers during bootstrap, 
if configured to do so. Once a peer bootstraps the platform, it may 
perform other steps, depending on the circumstances. Rendezvous 
and relay peers do not need to perform any other steps, because 
they are ready to serve the default peer group right after the 
bootstrapping. If they serve another user-defined group, then they 
proceed to join that group and open their services to the group 
members. For any peer, bootstrapping is the essential, first and 
complex step to perform, and it is therefore relevant for the 

 
 
 
 
 

Figure 2: Typical peer operations 
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performance study. A peer can bootstrap the JXTA platform only 
once inside the same Java Virtual Machine (JVM). 
2. Joining a group is usually the next step after bootstrapping, 
and it is performed in JXTA by loading a peer group 
advertisement from cache, instantiating a peer group object, and 
then applying for membership using a credential. Obtaining a 
membership may involve different delay costs, according to the 
security policies of the peer group, ranging from open access to 
LDAP authentication [1]. All communication with the rest of the 
peer network is done in the context of the peer group, even if that 
is just the default peer group. If a peer is joining the group for the 
first time ever, it must discover the peer group advertisement from 
the network or initiate a group by creating a brand new 
advertisement. Rendezvous peers are normally the ones that 
initiate a peer group, whereas edge peers discover it once and then 
they just reload it from cache or a file. A peer is not limited to a 
single group and therefore performs this step for each group it 
wants to join. 
3. A peer publishes own advertisement(s), thereby announcing 
its availability to provide a service to other peers. Publishing has 
two types, local and remote. Local publishing puts the 
advertisement in the local cache, from where it is sent out when 
discovery queries arrive. In this case, it is up to the other peers to 
send a query to obtain the advertisement. Remote publishing 
sends out the advertisement to other peers and the rendezvous 
peer. This pushes the advertisement closer to other peers, which 
allows them a faster discovery. Depending on the frequency of 
publishing and number of connected peers, this may turn out to be 
costly in terms of network traffic and processing on the peers and 
rendezvous. 
4. Opening an input pipe refers to the creation of a class 
instance that represents an input end of a unidirectional pipe. A 
pipe end is created using a pipe advertisement, which is typically 
first read from disk. These two operations are treated as a single 
step because they are almost always performed together. A peer 
creates a new pipe advertisement only if the old one never existed 
or was destroyed. A good JXTA citizen would always reuse own 
advertisements, which other peers may have already discovered 
and cached. A peer would normally never retrieve its own 
advertisements from the network or its own cache. 
5. The step of learning about the peer group is dependent on 
the actual application. For a shared computing system, it may be 
important to know who is active in the group to properly 
distribute load. On the other hand, for a distributed discussion 
forum application [5], a peer may be interested in just any other 
peer that is hosting a given forum. Although this step may not 
satisfy a strict definition of “typical”, it is included for both 
completeness and its high cost in case of remote discovery, 
especially when a peer group is created ad-hoc, without a 
rendezvous. A peer can search in own local cache for known peers 
(advertisements) or query the network for remote peers. 
6. Obtaining a pipe advertisement of another peer varies in 
complexity and cost. In general, obtaining an advertisement is 
probably the second most frequent operation executed by a peer; 
the most frequent would be sending a message. A pipe 
advertisement can be discovered from a network, retrieved from 
the local cache, loaded from a user-specified file or URL etc. 
Frequently, a pipe advertisement is embedded within another 
advertisement published by a peer, such as a service or module 

advertisement. It is expected that a peer would use a local cache to 
save on a cost of discovering from the network, and the results 
section shows the significant magnitude of this saving. 
Nevertheless, it is important to obtain measurements of discovery 
cost because the cache is not always an option. For example, 
JXTA advertisements have an associated lifetime, so unless a 
publisher refreshes an advertisement, it would be purged from 
other peers’ caches, forcing them to use remote discovery. 
Caching is not required by the JXTA protocols, so some peers 
may elect not to implement it, due to various reasons, such as 
resource constraints or security. Another reason for measuring 
discovery latency in a certain JXTA deployment is to arrive at the 
appropriate frequency of sending discovery queries. It would not 
be desirable to have peers send queries faster than responses could 
arrive. This would generate unnecessary network traffic in 
duplicate queries and redundant responses, and waste CPU cycles 
of requesters, responders and intermediate peers on the path. 
7. Opening the output pipe means binding to the output end of 
a pipe for which another peer has opened the input end. No 
options are available for this step, it is required before sending a 
message and it may be costly.  Binding a pipe end involves 
creation of connections between peers, several in case of relays, 
which imply latency.  
The steps discussed are typical of group-structured or hierarchical 
p2p networks and systems, and also apply to the well-known file-
sharing systems [4, 14]. Since JXTA is designed and implemented 
with structure in mind, especially group-based peer communities, 
it is desirable that peers follow this idea. 

3.2 Message Round-Trip Time 
Message round-trip time (RTT) is the most common metric used 
to evaluate a communication protocol or system. This paper 
investigates the application-level message RTT, which is affected 
by a number of important factors in JXTA. First, JXTA protocols 
are XML-based, which involves an overhead in the message 
composition and processing. Second, JXTA pipes present a high 
level of abstraction over underlying TCP and HTTP transports. 
Third, three different ways of message passing exist, unicast, 
secure unicast and propagate. Four, a path between peers may 
traverse one or more relays. Although the list of factors is not 
exhausted, these four are discussed here.  
Measurements of RTT under different conditions and peer 
configurations indicate trade-offs between performance, security 
and reliability. Secure pipes are expected to introduce a delay 
penalty due to encryption, whereas propagate pipes by their nature 
introduce higher processing cost on both edge peers and relays. 
On the other hand, propagate pipes can exploit the availability of 
IP multicast to improve performance by avoiding the overheads of 
multiple connections associated with TCP and HTTP.  

3.3 Pipe Throughput 
As different layers of abstraction and overhead are introduced, the 
data throughput suffers. JXTA messages include a lot of overhead 
data, due to their XML-based structure and source-based routing. 
The question arises whether this overhead impairs data throughput 
significantly or not. Since JXTA messages do not have a size 
limit, it is expected that larger messages achieve higher data 
throughput. However, this depends on the message composition in 
terms of number of (XML) elements and the element payload size.  



Ultimately, message throughput depends on the underlying TCP 
sending rate, but it is still important to know what the sending rate 
limits are in terms of number of messages. Moreover, both 
senders and receivers maintain message queues, which have their 
own effects. The queues amortize bursty traffic and affect 
reliability as messages may get dropped in case of overflow. 
JXTA pipes are unreliable and only higher-level services 
implement loss recovery. 

3.4 Rendezvous Peer Throughput 
Rendezvous peers serve several purposes and can potentially be 
subject to high message load. Primarily, rendezvous peers respond 
to search queries from other peers. In addition, they propagate 
messages within the peer group and take part in pipe resolution. 
The response time, message and query throughput and 
advertisement cache management are all important performance 
factors for a rendezvous peer. The effects of cache on the 
rendezvous bootstrapping are briefly explored, and the full 
rendezvous benchmarking is left for future work. 

3.5 Relay Peer Throughput 
Relay peers’ main purpose is to pass messages between peers that 
cannot establish direct connection. As the number of firewalls and 
NATs increases in the Internet, the connectivity becomes more of 
a problem, and the role of relays becomes more important. Relays 
pass messages and cache routing information, so they are 
potentially exposed to large amounts of traffic. Therefore, 
scalability and performance of relays dictates the size of the peer 
group they can support and the message load their group can 
safely sustain. Both message load and the type of pipes used for 
message transfer affect the relay. In large peer networks, the 
question may not be how powerful machine a relay should be, but 
how many relays are necessary for making the system work. 

4. RESULTS AND ANALYSIS 
In this section are presented and analyzed the results obtained by 
measuring the components of the proposed performance model 
(Table 1). The measurements are obtained by running a series of 
benchmarks. The benchmarks are designed to run at the 
application level; hence they measure the application’s 
“perspective” on JXTA performance. The benchmarks are 
reusable for future versions of JXTA, given the stability of the 

small subset of the Java implementation API. The hardware and 
software running on the peers in all tests is listed in Table 2. 

4.1 Peer Operations 
A peer typically performs a series of steps during the course of its 
lifetime in a peer network. The measurements of the time required 
to accomplish these steps were taken with the goal of identifying 
the cost of each step relative to other steps and the startup process. 
Although the order and frequency of the steps is application-
specific, it is still worthwhile looking at some typical scenarios 
and combinations of steps.  
In a hypothetical scenario, an edge peer performs the given steps 
once upon startup in the order shown in Figure 2. Some steps are 
split into basic operations to show their relative difference in 
latency. When all of the given steps are completed, a peer has 
joined the group, learned about member peers and resources, and 
decided with which peer it wants to interact. This scenario is in 
part based on the p2p forum application from [5], and in part on 
MyJXTA application [16]. 
Four peer configurations are compared, two for peers in ad-hoc 
groups with different cache sizes, and two for peers using 
rendezvous/relay at different distances, both without any extra 
advertisements in the cache (Table 1). Two edge peers are used 
for the ad-hoc tests, one is taking measurements and the other 
provides discovery responses. A rendezvous/relay peer is added 
for the additional tests; one on the same LAN, and the other 6 
hops away. The remote rendezvous has a high-speed cable modem 
connection to the Internet, with the average round-trip time 
measured by ping tool of 67 ms, compared to less than 1 ms for 
LAN traffic. Presented results are based on 10,000 measurements 
of the given sequence of operations. 
Bootstrapping: Assuming that a starting sequence includes a 
single execution of each step, bootstrapping itself consumes most 
of the total time. This step is mostly affected by the cache size and 
the use of a rendezvous/relay. Connecting to the rendezvous/relay 
adds the overhead of several socket connections. Depending on 
the distance, the measurements show that connecting to the 
rendezvous may extend the boot process by as much as 36%. 
However, the cache size has much stronger effect on the 
bootstrapping performance, and it is explored in more detail. 
Local advertisement cache: Although local caching is not 
mandated by the JXTA protocol specification [12], its benefits are 
obvious when comparing the time required for retrieving local vs. 
remote peer and pipe advertisements. The trade-off comes 
primarily with the cost of bootstrapping. To exploit the cached 
information, a peer needs to keep the cache up to date. The cache 
is cleaned up during the bootstrapping, which comes at high cost. 
It takes almost twice as long to start with 40 advertisements in the 
cache, compared to starting with the empty cache. For 

Table 1: Latency of typical peer operations (milliseconds) 

Peer Configuration Boot
Get 

group
Join 

group
Publish 

ads
Open 

in-pipe
Get local 

peers
Get remote 

peers
Get local 

pipes
Get remote 

pipes
Open 

out-pipe Total
No Rdv 4465.8 1257.5 3.8 80.0 16.4 58.8 404.9 25.4 221.2 159.0 6692.7
No Rdv [with 40 ads] 8218.7 1337.2 3.9 81.8 20.7 61.8 392.9 28.4 236.1 173.5 10555.0
With Rdv on same LAN 5858.3 968.7 3.9 66.5 27.0 103.6 726.0 47.6 414.7 248.8 8465.3
With Rdv 6 hops away 6074.1 1190.1 4.3 65.8 16.5 123.3 1639.2 29.8 1173.4 693.2 11009.8  

Table 2: Peer hardware and software configuration 

Hardware Software 

PC AMD Athlon 800 MHz 
512 MB RAM 
100 Mbps Fast Ethernet 

MS Windows 2000 SP3 
JVM 1.4.1 HotSpot 
JXTA Stable Release 092402 



applications where peers restart frequently, the overhead of cache 
maintenance may adversely affect user’s experience. 
In addition, the “freshness” of the cache is indirectly affected by 
the behavior of other peers, in terms of correctly specifying 
lifetime of the advertisements. Peers should specify the lifetime so 
that it matches both their own lifetime in the group and their 
intention to periodically refresh the advertisements.  
The effect of the cache size is best seen through the time it takes a 
rendezvous/relay peer to bootstrap the platform with different 
cache sizes (Figure 3). The bootstrap time is measured for the 
cache located NFS and on local disk. Note that the growth of 
values for NFS is at much higher rate than for a local disk. For a 
rendezvous peer starting with 1000 advertisements, the cost of the 
NFS is prohibitively high. For example, in a campus environment, 
where users of computer labs are forced to use the NFS, it may 
not be desirable to configure a peer to act as a rendezvous if the 
advertisement traffic is high. 
Joining a group: The process of joining was measured separately 
for creation of a group and the actual join operation by invoking 
the required methods. The join in this test uses an empty 
credential, which essentially means that a peer is joining an open 
group. That is why the join is so fast compared to the group 
instance creation. A peer may join using an LDAP authentication 
or some other mechanism, which would likely take more time, but 
this test is performed around the minimal required operations. 
Note that the group creation involves retrieval of the group 
advertisement from cache and creation of the group object, which 
sets up the environment for the group inside the JVM. This is the 
second most expensive operation overall and that is an issue of 
concern for applications in which peers change group membership 
often and participate in several groups simultaneously. 
Discovery of the group resources: The remote discovery of both 
peers and pipes (or any other resources) is an order of magnitude 
slower than retrieval from local cache (Table 1). Note that the 
results in this test present the time until the first discovery event, 
which certainly does not mean that this event would give a full 
picture of the discovered resources in the peer group. Depending 
on the group size, a peer may wait for a long time to collect the 
advertisements from all active peers, and it can never be sure that 
all peers responded. The question arises what is to be done in case 
a peer cannot rely on the cache to provide the accurate 
information. In this case, a rendezvous peer should be able to 
provide an accurate picture of the peer group, at least in terms of 
the active peers, not necessarily other resources. The cost of 
retrieving the information from the rendezvous is higher, 

assuming it is possible to always have one available. A connection 
to the rendezvous increases startup time, consumes resources by 
keeping the connections open and the exchange of messages is 
somewhat slower, since these connections use TCP or HTTP, 
whereas ad-hoc connections rely on UDP. Placing a rendezvous 
as close as possible to the edge peers, in terms of network 
distance, ideally on the same LAN, can minimize the messaging 
cost (Table 1). However, although it takes more time to retrieve 
the information from the rendezvous peer, this information is 
expected to be complete. The overhead is certainly worth it if the 
application requires that peers have updated information about the 
group. 
Opening output pipes: To open a pipe, its name must be resolved 
to an endpoint, possibly using a rendezvous and a relay, and it is 
strongly dependent on the network distance between peers. 
Combined with the remote advertisement discovery, it turns out 
that connecting two peers on a LAN may take in excess of 600 
ms; across the Internet several seconds. Developers should 
therefore try to reuse both the advertisements and open pipe 
handlers, whenever possible. Savings by reuse are higher if peers 
cannot connect directly and must use a relay as an intermediary. 
Publishing advertisements: The results from Table 1 indicate that 
the last step in this discussion is certainly not the least important. 
The apparent low cost of this operation does not mean there is 
nothing to discuss, because there is no significant cost. On the 
contrary, this step may have a significant impact on the peer 
community as a whole. By publishing the advertisements, a peer 
really pushes the information about itself closer to the potential 
users, which is one of the foundations of the concept of peer-to-
peer computing. Published advertisements are sent to the 
rendezvous and, depending on the network and transport 
configuration, to other peers in the group as well. If a rendezvous 
does not have the desired advertisements, it must contact all other 
peers before it can respond. So by publishing, a peer both raises 
the awareness of other peers about the available resources and 
saves them on cost of discovery. When used properly with tuned 
advertisement lifetime settings, performing this step goes a long 
way towards a more efficient peer network. 

4.2 Message RTT 
The measurements of the message RTT were obtained in a setup 
of two edge peers and if required, one relay, all on the same LAN. 
The RTT represents the time elapsed between the send request 
and the receipt of the acknowledgment at the sender. The 
messages are sent sequentially, and each message includes the 
sender’s pipe advertisement and the message sequence number for 
the total of 316 bytes. It is actually very common that a JXTA 
peer sends own pipe advertisement inside the message, so that a 
receiver may respond. Processing is minimized at the receiver by 
reusing the open response pipe. The tests are performed in various 
configurations to show the effects of type of pipe, message size 
and composition, transport protocols and relays. All results are 
based on 10,000 acknowledged messages with 1,000-message 
warm-up period. 

4.2.1 RTT and Message Size 
The objective of this test is to understand how different types of 
pipes behave over the range of message sizes. Each message 
contains a single payload element of size ranging from 1 KB to 10 
MB.  The messages were exchanged between two peers using a 
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direct TCP connection. Figure 4 shows the average RTT of three 
types of JXTA pipes for each of the message sizes (both axes are 
log scale).  
Each pipe exhibits slow, close to linear increase in RTT from 1 
KB to 100 KB, unicast pipe even to 1 MB. Between 100 KB and 
10 MB, the message RTT over the secure and propagate pipes 
increases at a different and much higher rate, but it seems to also 
follow a linear trend. The increasing rate for unicast pipe from 1 
MB to 10 MB closely follows the rate of other pipes, but it is hard 
to conclude what would be its possible ongoing trend. It is 
certainly desirable that message RTT over any pipe increases at 
most linearly over message sizes. The graph of the maximum RTT 
(not shown) looks very similar to the graph of the average RTT.  
By relative comparison, the propagate and secure pipes differ in 
the order of magnitude consistently, whereas unicast pipe 
performs closer to secure for smaller messages, but converges 
with propagate pipe for larger sizes. This indicates better scaling 
properties of the unicast pipe over TCP up to the 10 MB message 
size.  
The results for the larger message sizes are not available because 
it was not possible to transfer messages of 100 MB and larger in 
our setup, regardless of the abundance of memory or tuned JVM 
setting. The maximum message sizes successfully transferred at 
least once were 86 MB over unicast, 97 MB over secure and 29 
MB over propagate pipe. 

4.2.2 Effects of Relays and Transports on RTT 
JXTA peers can be configured to use TCP, HTTP and UDP in any 
combination. TCP is used whenever a direct connection between 
peers can be established. HTTP is used when a firewall or NAT is 
on the path or a peer specifically wants to use a relay, and UDP is 
exploited in the form of IP multicast for efficient propagation of 
messages on a subnet. The measurements of the RTT in different 
peer configurations and on different transports are shown in 
Figure 5. The messages in this test contain one payload element 1 
KB in size. 
In the Direct TCP/UDP configuration, two peers connect directly 
without any rendezvous or relay. Propagate pipes show much 
better performance because the peers use available IP multicast.  
In the second configuration, two peers use a relay on the same 
LAN, all configured to use both TCP and HTTP, with multicast 
disabled. The RTT for unicast pipe, which is almost the same as 
for the direct TCP connection, indicates no significant effect of 
the relay. The secure and propagate pipes show higher latency 

when using a relay, as expected. While the increase in latency 
over a secure pipe is moderate, it quadrupled for propagate pipes. 
This large increase for propagate pipe is affected mostly by 
removing multicast.  
The third configuration reveals more interesting results. Here the 
peers use only HTTP to communicate with the relay. Unicast 
pipes perform much better here than in other configurations, 
which is quite unexpected, considering overhead of HTTP and a 
relay. Similar result was obtained for propagate pipe, but the 
difference is minor compared to the second configuration. Secure 
pipe is slower as expected, again by a moderate amount.  
Finally, the two-relay configuration is set up so that relays have 
both TCP and HTTP enabled, and edge peers use only HTTP to 
connect to one relay each. The relays pass messages between each 
other on behalf of their attached edge peers. Secure pipe gets 
uniformly slower through the configurations as expected. 
Compared to the configuration with HTTP and one relay, unicast 
and propagate pipes also show higher latency, as expected. 
However, when compared over all four configurations, unicast 
pipe performs almost equally throughout except in a single relay 
setup with only HTTP transport. Propagate pipe, on the other 
hand, suffers most from the additional relay, passing messages 
twice as slow as with a single relay. Overall, a single HTTP relay 
costs 4 times, and two relays 8 times more than IP multicast for 
propagate pipe. 

4.2.3 RTT and Message Composition  
The following test looks for difference in performance of pipes 
depending on the number and size of the message elements they 
carry. Four variations of a 20KB message were used: 1x20KB (1 
element of size 20KB), 5x4KB, 10x2KB and 20x1KB.  
Figure 6 shows that the performance of secure pipes is very much 
affected by message composition. On the other hand, there is less 
effect on unicast and propagate pipes, but it does exist. Increasing 
the number of elements from 1 to 20, while reducing their size, 
more than doubles the average RTT on a secure pipe. For unicast 
pipe, the increase in RTT over four combinations is 24%, and for 
propagate pipe about 43%. This effect of message composition is 
not very surprising, considering that messages are XML 
documents and the complexity of document structure affects the 
processing time. In addition, using more message elements to 
transfer the same amount of payload (in bytes) increases the 
overall message size by additional XML element tags, but this is 
not a very significant factor for smaller messages. In case of 
secure pipes, the encryption cost rises rapidly with increasing 
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amount of data. Therefore, the composition of messages is yet 
another variable to consider when designing a JXTA-based 
system. 

4.3 Pipe Message and Data Throughput 
JXTA pipes are by definition unreliable, and this lack of 
reliability is largely reflected by the queuing policy. All messages 
are queued before actual sending at the sender’s side, as well as 
on the receiver’s side before delivering to the application layer. If 
the queue is full, the oldest message is discarded to make room for 
the new one. Since JXTA pipes use TCP and HTTP, they tend to 
be reliable, only the propagate pipe lacks reliability with IP 
multicast, but it behaves same as the other two types when 
multicast is not available. 

4.3.1 Pipe Message Throughput 
The test of pipe throughput measures the limits of reliable transfer 
in JXTA terms, meaning that no messages are dropped. Both 
sender and receiver rates are included. The most interesting 
feature exhibited by unicast and secure pipes is the limited 
sending rate, regardless of the attempted rate. The sending rates of 
up to 300 messages per second (msg/sec) were attempted, but they 
were capped at levels shown in Figure 7. For unicast pipes, the 
maximum sending rate measured at 115 msg/sec for 1 KB, and 97 
msg/sec for 10 KB messages delivered at smooth rate by the 
application. Under the same conditions, a secure pipe sends at 
about 23 msg/sec for both 1 KB and 10 KB messages. The unicast 
and secure pipe implementations achieve the sending rate limits 
without dropping messages. In addition, the sending queue 
amortizes the bursty message delivery by the application very 
well, again without drops. The bursty traffic in the test for unicast 
and secure pipes consisted of 50-message bursts and 500 ms sleep 
time. No significant difference was observed between the rates for 
1 and 10 KB message (under 4.6%), meaning that it is the number 
of message, not the number of bytes that affects the sending rate. 
For propagate pipes, the sending rate of about 20 msg/sec is both 
the maximum no-loss rate and the rate that an application should 
attempt. Higher sending rate causes messages to be dropped from 
the sender’s queue. The almost non-existent value for bursty 
traffic a propagate pipe can sustain indicates the failure to 
accommodate any significant burstiness. At most 2-message 
bursts followed by an idle period resulted in maximum rate 
without drops at the sender, but still had a small drop rate at the 
receiver. 
The obtained results for limits on sending rate are useful for both 
the simulation of JXTA networks and the design of JXTA 

applications. For example, for a given number of peers in a group, 
it is possible to calculate the maximum message load peers can 
produce. In the simulation, given the network load, it is possible 
to calculate the number of peers required to generate the wanted 
traffic. 
On the receiver side, no message drops were recorded for 
maximum sending rates over unicast and secure pipes. For 
propagate pipe, significant drop rates were recorded, depending 
on the sending rate, message size and burstiness. An attempt to 
send at the rate of 200 msg/sec over a propagate pipe translated 
into a 42.9% message loss over a session of 10,000 messages. 
When sending at the rate of 20 msg/sec, the loss was ranging from 
zero to 23.95% over 10,000 messages for different message sizes 
and burstiness, in an inconsistent fashion. The only conclusive 
behavior from the measurements is that the propagate pipe always 
performed without loss at smooth sending rate of 20 msg/sec. 

4.3.2 Pipe Data Throughput 
Considering a relatively low no-loss rate in msg/sec, it is 
important to look at its impact on the data throughput of JXTA 
pipes. As Figure 8 shows, it is not surprising that larger messages 
achieve higher throughput, because the number of messages is the 
limiting factor, not the size. At the same time the difference 
between the raw vs. data throughput is recorded. Data throughput 
measures the actual payload transmitted in the message, and it is 
considered an important metric in the performance evaluation of 
distributed object architectures [10].  
The control information in a JXTA message may account for a 
significant portion of the overall volume of bytes transmitted. This 
is clearly shown by the impact the extra information has for 
smaller messages, such as 1 KB, compared to large payloads of 10 
KB. In Figure 9 are shown the fractions of the throughput that are 
actual payload data. For 10 KB payloads, the overhead data is 
under 20%, whereas for small messages carrying 1 KB payload, 
the overhead may account for up to 60% of the message. It is 
noticeable that propagate pipes have the highest overhead over 
TCP connection, and unicast pipes the lowest.  

4.4 Relay Message Throughput 
Relays are necessary to connect the pipe ends between peers and 
they introduce the overhead of communication by adding the 
processing cost and extending the pipe length. The relay 
throughput test measures the receiving rate of messages, given 
some sending rate and the message path through relay. The 
expected lower receiving rates can quantify the overhead a relay 
imposes on pipe throughput. 
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The setup of this test consists of two HTTP edge peers connected 
to the relay, all on a LAN. The messages are sent from one peer to 
the other over all types of pipes. The message throughput is 
measured for no-loss transmissions and shown in Figure 10 (note 
that x-axis is not linear scale).  
The throughput increases at a very similar rate for all pipe types, 
indicating the strong and consistent effect of the relay. The 
receiving rates are closely related to the relay’s output rates and 
they are lower than for the direct peer connection. The maximum 
receiving rate through the relay was measured at 67 msg/sec for 
unicast, and just over 9 msg/sec for secure pipe. These results 
represent up to 41% and 60% reduction in message throughput for 
unicast and secure pipe over the direct TCP connection, 
respectively. The smallest effect is seen on propagate pipes, which 
still keep their throughput at about 20 msg/sec. However, if the 
sender is configured to use both TCP and HTTP, the rate almost 
doubles for propagate pipes, but with a large number of out-of-
order messages at the receiver.  
All types of pipes exhibit the optimal transmission rate, 
represented by the sharp cut-off in the graph. An attempt to send 
at a higher rate results in a slightly lower receiving rate, likely due 
to overloading of the relay.  
Only throughout this test, the relay consistently failed, apparently 
due to overloading. The transmission would suddenly fail after 
about 3900 messages over unicast, 2800 over secure, and 2100 
over propagate pipe. The repeated runs would result in failures at 
almost the same message counts. The speculated reason for this 
would be the problems in resource usage at the relay, in particular 
the creation of excessively high number of new HTTP 
connections to the receiver, possibly for each transmitted 
message. 

5. RELATED WORK 
The peer-to-peer approach has gained significant success and 
popularity in recent years, mostly due to several widespread types 
of application: instant messaging (IM), file sharing and 
collaboration. Most of the p2p applications have a very specific 
way of dealing with peer and resource discovery, communication 
and resource sharing. On the other hand, JXTA primarily provides 
standard protocols and tools to build interoperable p2p 
application regardless of their type. A related effort to standardize 
the protocols for one type of application is Jabber [8]. Jabber 
defines the open-standard protocol for message exchange, offering 
extensible and decentralized IM solutions. Gnutella and FastTrack 
[14] offer their own protocols for worldwide file sharing, using 
hierarchical network with super-peers to facilitate search and 

discovery. In the lower-level distributed object world, CORBA 
represents a solution for heterogeneous object registration and 
discovery, and remote method invocation. 
Solutions for efficient large-scale object location and routing are 
provided in the form of application-independent protocols, such 
as CAN [21], Pastry [3] and Tapestry [15]. These protocols are 
based on distributed hash tables (DHT) and they can be used to 
build application-level multicast [3], distributed file storage [15] 
and cooperative web caching [7]. The DHT protocols fit on top of 
JXTA as higher-level services. They could provide a more 
efficient search mechanism, while exploiting the lower-level 
resource discovery features of JXTA [26]. Business-oriented 
systems, such as Web Services, are based on open standards of 
XML, SOAP and WSDL [6], in which centralized UDDI 
directories facilitate the search, but they do not support dynamic 
discovery and concept of group organization.  
Some of the existing p2p solutions are not built with high 
performance and scalability in mind [21, 22]. This has prompted 
research into the performance, scalability and characterization of 
p2p systems. Such work includes analytic and simulation-based 
performance modeling [13] and measurement studies based on 
network crawling and traffic tracing [22, 24] of Gnutella network. 
The traffic characterization study was based on a campus-level 
trace of several content delivery networks [23]. The available 
results show a large heterogeneity of peers in terms of network 
bandwidth, lifetime, amount of shared data and willingness to 
cooperate. Such findings demand that future p2p applications and 
protocols, including JXTA, be designed to provide good 
performance, high scalability, and adaptation to heterogeneous 
environment. 
Performance measurements are available for components of early 
releases of JXTA, and mostly in the context of a particular 
application. A higher-level JXTA service, the JXTA-wire (many-
to-many pipe) was evaluated for support of Type-based Publish-
Subscribe approach for building p2p applications [2]. The JXTA 
propagate pipe was compared to the alternative solution for high-
speed communication within peer groups [9]. In the previous 
work, the peer discovery and unicast pipe performance in the 
context of a p2p forum system were investigated [5].  
Earlier results indicate that a broad and more detailed 
performance study is needed. The JXTA community initiated a 
dedicated Bench sub-project, with a purpose to collect 
performance and scalability measurements as the platform 
development progresses [11]. The results of the various 
measurements are published on the project web site in the form of 
time-series graphs and progress summary. The majority of the 
information is provided in absolute numbers, most appropriate for 
the platform developers. The emphasis is currently put on the 
measurements of the pipe throughput and rendezvous search and 
discovery performance, showing progress over JXTA releases.  
The test results are from the controlled environment. The Bench 
project provides the evaluation JXTA pipes in more detail, 
considering differences in type of pipes, earlier JXTA versions 
and the operating system [25]. 
The work and results presented in this paper are intended to 
complement the existing efforts, and extend them in terms of more 
detailed examination of JXTA components. The development of 
the benchmark suite and collection of results provides indication 
of the areas that need improvement in JXTA and guidelines for 
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system designers to build better p2p applications. Although the 
discussed measurement methods and tools are presented in the 
context of JXTA, they are also applicable to any current or future 
structured hierarchical p2p systems.  

6. CONCLUSION 
This paper discussed the performance issues of the JXTA platform 
and presents the performance model and the benchmarking results 
for the reference implementation. The results are obtained from 
JXTA peer configurations on a single LAN, in almost all tests. 
The absolute measurements obtained are therefore most applicable 
to the enterprise deployment of JXTA. Nevertheless, it is expected 
that the general characteristics of JXTA components observed and 
their relative comparisons would translate to the wide-area 
deployment.  
This study investigates typical peer operations, local cache and its 
underlying file storage, pipe and advertisement reuse, and various 
messaging parameters. The obtained results show high cost of the 
JXTA bootstrapping process relative to other operations, with the 
major factor being local cache management. In particular, the 
significant negative impact of NFS is noted. Local cache, on the 
other hand, allows for significantly faster gathering of information 
about the peer group resources, especially when combined with 
the disciplined advertisement publishing. The high cost of pipe 
binding strongly suggests the reuse to developers.  
The relative performance cost of different types of pipes is 
analyzed in respect to message size and composition, network 
transports and relays. The most important observations are the 
good scaling properties of message RTT over various message 
sizes, sending rate limits and the limits of reliable message 
throughput. The significant impact of relays on message RTT 
throughput and reliability is also measured. 
With the presented results, it is possible to derive some guidelines 
for the developers of distributed applications based on JXTA. For 
example, relatively low message throughput combined with the 
effects of message composition and its structure overhead 
suggests that it is more efficient and safer to transmit moderate-
sized messages and minimize the traffic.  File-sharing applications 
could benefit by carefully choosing the most efficient transfer 
fragment size. It further seems important to reduce the number of 
relays on the message path as much as possible. This result 
indicates that peers from separate networks should pick one relay 
from one of the networks, rather than having a separate relay in 
each network. Deeper analysis and derivation of recommendation 
and guidelines should provide more valuable results, and it is left 
for future work. 
By performing the evaluation of JXTA components on a LAN, 
only a part of needed testing and benchmarking was tackled. 
Areas of future work include primarily scalability evaluation of 
large peer groups, in terms of messaging through relays and 
discovery on rendezvous peers. For JXTA pipes, the throughput 
with multiple senders for unicast and secure, and multiple 
receivers for propagate pipe should be measured and compared to 
one-to-one communication. In addition, the testing of all 
components on a wide-area configuration would be necessary to 
complete the performance and scalability picture of JXTA. 
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