
Selecting the Best Web Service

Julian Day
University of Saskatchewan

Saskatoon, SK, Canada
julian.day@usask.ca

ABSTRACT
Web services are applications that communicate over open
protocols such as HTTP using structured forms of XML
such as the Simple Object Access Protocol (SOAP [17]) or
Remote Procedure Calls for XML (XML-RPC [18]). There
have been efforts to standardize a number of things: the Web
Service Description Language (WSDL [5]) is a standard for
describing web services’ syntax, and the Universal Descrip-
tion, Discovery and Integration protocol (UDDI [1]) is often
used as a discovery mechanism for dynamically finding new
services. However, there have been few efforts to describe
the interactions between clients and services. In this paper,
a system is discussed and analyzed for using the Resource
Description Framework (RDF [13]), the Java Expert Sys-
tems Shell (JESS), and the Web Ontology Language (OWL
[15]) to augment web service clients. The clients can col-
lect, report, and analyze data about their experiences with
the quality of service (QoS) of web services, and are able
to parse and use this information to dynamically select the
best service for their needs.

General Terms
web services

Keywords
web services, semantic markup, quality of service

1. INTRODUCTION
XML Web services were introduced with the specification of
XML-RPC by UserLand software in 1998 [18]. Web services
use XML-RPC or SOAP [17] for encoding data over a trans-
port layer, usually HTTP, so there are many that consider
XML-RPC to be the start of web services. Popularized by
their inclusion in software packages such as Microsoft Visual
Studio and Sun’s Web Services Developer Pack, web services
have recently seen an explosion in popularity. Their design
intention is to increase interoperability between applications
running over the web through the use of open standards.

SOAP is a W3C recommendation, and XML-RPC is essen-
tially halted: development of the specification stopped in
1999, except for a small update in 2003 to allow for Unicode
strings.

Web services communicate by sending requests over HTTP.
These are standard HTTP requests with SOAP- or XML-
RPC-encoded content appended to the end. The service
processes the request, and then sends an HTTP message
back. This process is shown in Figure 1.

Currently, there has been much focus on how to characterize
the syntax of web services. The most popular of these is the
Web Service Description Language, or WSDL. WSDL is “an
XML format for describing network services as a set of end-
points operating on messages containing either document-
oriented or procedure-oriented information.” [5] However,
while WSDL remains popular, there has been less work in
standardizing meaning for web services: what they do, what
they require, and what they provide, among other things.
One area that has recently been explored for these purposes
has been that of the semantic web.

The semantic web, as envisioned by Tim Berners-Lee, et
al., is the markup of web data so that its semantics are
machine-understandable [2]. It was conceived after the re-
alization that despite the vast amounts of data stored on-
line, computers could understand the semantics of virtually
none of this information. One of the efforts produced by
researchers in the semantic web community has been the
creation of semantic markup languages [8]. The purpose of
these languages is to give semantic structure to data, allow-
ing systems to “understand” information in ways similar to
how humans would. A variety of languages have been pro-
duced. Among the best-known are RDF [13], RDF Schema
[4], DAML+OIL [9], OWL [15], and OWL-S [6]. These are
each discussed in detail in Section 3.

The system described in this paper provides an automated
web service client augmented with semantic models based
on RDF and OWL, and a reasoning engine built in JESS,
a rule-based expert system implementation in Java based
on the RETE [7] algorithm. Both the semantic model and
the reasoner will be discussed in detail in Section 4. These,
combined with the publicly accessible forums to which the
clients report their experiences, allow clients to reason about
which of a number of syntactically identical web services
will provide them with the best service. Once the client has



Figure 1: A Client Interacts With a Web Service

determined this, it will transparently switch its operations
over to that service.

This paper is structured as follows: Section 2 gives a de-
scription of the problem of web service selection, and the
approach taken in this paper. Section 3 is a survey of the lit-
erature on web services; the semantic web, semantic markup
languages (including RDF, DAML+OIL, OWL, and OWL-
S), and semantic web services; and a short description of
rule-based expert systems. Section 4 describes the system
built for dynamic web service selection, with experimental
data from that system discussed in Section 5. Conclusions
are presented in Section 6, with future directions for research
in Section 7.

2. PROBLEM DEFINITION
Selecting a web service for a client is typically a task per-
formed by the designer of the client. The designer would
know about one or more services, and generate the client
based on the location and suitability of those services. In
this paper, a solution is proposed whereby the designer is
freed at least somewhat from the selection process, allow-
ing both the user and the system to work together to find
and use the best service available. Given a number of user-
specified, syntactically identical web services that purport
to provide the same services to the client, which should the
client select? An example of this can be seen in Figure 2.

One approach to this problem could be through negotiation.
If each web service could be seen as having a cost associated
with it, is the cheapest service sufficient? Not necessarily.
And neither is the most expensive service necessarily the
best. Because cost is not a certain indicator of QoS, ne-
gotation is ignored and instead, the problem of selection is
tackled by looking at the past experience of those who have

Figure 2: An illustration of the selection problem

used the service. The process used is to build an evalua-
tion function, f , which guides the client as to which service
to select. f takes in the raw data about a number of web
services, processes it, and then returns the best web ser-
vice for that particular client. The function f is currently
fairly simple, applying a set of weights to the mean expe-
rienced reliability, availability, and execution time. These
weights have default values, but can be easily changed by
the user to reflect his or her preferences. The system could,
through the use of more JESS rules, be extended to add
weights to factors such as the IP addresses of the reporting
clients, allowing for trust-based weightings or higher weights
for clients within a particular subnet. The use of an expert
system shell, JESS, for reasoning makes the system more
open and scalable to more complex rules.

There were two approaches that were considered for getting
the information required for sharing experiences: server-
side or client-side augmentation. A server-side augmenta-



tion would allow the web service and its designers to talk
about the guarantees that could be received from it. By
contrast, a client-side approach treats the web service as a
kind of black box. The client knows about the operations
available on the web service (as a programmer has coded a
client for their definition), but otherwise, the web service’s
semantics are ignored. Instead, the system captures the au-
tomated calls made by the client, and notes a number of
things: whether or not the calls got through, whether or
not the expected operation return type was returned, and
how long, in seconds, the call took to execute.

The approach taken is to augment the client, rather than
the server. There have been some efforts to use server-side
information to make selection decisions [14], but these op-
erate on the principle of objective publishing. However, if a
service is not entirely forthright with the accuracy of its se-
mantic information or service guarantees, then a client could
be fooled into selecting an inferior service. It is for that rea-
son that the client is augmented: assuming no tampering
and database flooding, correct data should be compiled and
made available to the clients. This might be a strong as-
sumption, however, and it is discussed further in Section 7.
The clients send their experiences to a central web service
which stores this information inside an internal database.
This web service can be thought of as a kind of forum sys-
tem for QoS information. It can respond to requests about
particular web services, sending all the data it knows about
a particular service to a requesting client. Now when a client
wants to pick a service, it gathers information from the QoS
forums, and then reasons about which service is best. This
is illustrated in Figure 2.

The four questions to be answered are as follows:

1. How can a web service be evaluated?

2. Which semantic markup language (RDF, DAML+OIL,
OWL, OWL-S, etc) should be used for the representa-
tion?

3. What is needed to describe a web service quality of
service ontology?

4. Can such a system be built?

3. LITERATURE REVIEW
3.1 Web Services
Web services were first discussed by the W3C in 2000. While
XML-RPC had been finalized, and a W3C mailing list cre-
ated for XML protocol discussion, in the previous year, it
was not until 2000 that the W3C started to create plans
for XML protocols. In February of 2000 they created an
interim plan for XML protocols, and in September of that
year, they began investigating using XML for a protocol to
facilitate application-to-application messaging. A year and a
half later, in January of 2002, they extended this by launch-
ing the Web Services Activity. Its aim was to extend the
scope of the ongoing XML investigation into all aspects of
web services. The goal of this research, as they put it, has
been “to design a set of technologies fitting in the Web archi-
tecture in order to lead Web services to their full potential”
[10].

These activities have produced a number of results. One of
the most important was a common protocol on which most
web services are based: SOAP. The first version of SOAP,
1.1, was detailed in a W3C note from May 8, 2000 [3]. The
specification was authored by a number of people from a
number of large companies such as IBM and Microsoft. The
most recent version of SOAP, 1.2, is a W3C recommendation
as of June 24, 2003.

Also part of the W3C are the Web Services Description
Working Group, and the Web Services Choreography Work-
ing Group. The former group is largely responsible for
WSDL, while the latter seeks to create a language to de-
scribe the relationship between web services (hence the “chore-
ography”). The Description Working Group, as of the time
of writing, has not yet produced the long-expected WSDL
2.0. It is expected to be ready some time around May of
2004. The Choreography Working Group is expected to
public a working first draft by the end of 2004 [10].

While much research has been put into the standardization
process, there has recently been more academic research in
the area of web services. One area that has been receiving
more attention lately is that of web service selection: how
can we determine the best web service for a particular need?
Often, as in this paper, the proposed solutions are dynamic,
allowing for on-the-fly service selection and invokation.

Liu, Ngu, and Zeng [12] approach this problem, detailing
a dynamic selection process for web services based on QoS
computation and policing. Their system uses an “open, fair,
and dynamic QoS computation model for web services se-
lection” by means of a central QoS registry. They describe
an “extensible QoS model”, arguing that web services are
so diverse that a single, static model cannot capture all of
the relevant QoS parameters, and that domain-specific pa-
rameters for one service may be completely inapplicable to
others. They define a number of generic quality criteria, in-
cluding execution price, execution duration, and reputation.
Execution price is the monetary cost the service requestor
must pay the service provider to use the service. Execution
duration is simply the time it takes, in seconds, to call the
service and get the result back. Reputation is a parameter
that can be specified by each user for any particular web
service he or she uses.

Their QoS registry is similar to the approach taken in this
paper, explained in detail in Section 4. Their registry takes
in data collected from the clients, stores it in a matrix of web
service data in which each row represents a web service and
each column a QoS parameter, and then performs a number
of computations on the data, such as normalization. Clients
can then access the registry, getting rankings of web services
based on their individual preferences. [12]

Much of the material drawn upon by the industry for web
services has been standardized by the W3C, including most
of the core underlying technologies: XML, upon which the
encoding mechanisms of SOAP and XMLRPC are based;
SOAP, and WSDL. However, one area that the W3C has
been pursuing since the late 1990s has been the semantic
web, which holds much promise for the future of web ser-
vices.



Figure 3: Selecting the Best Web Service through Reasoning and the QoS Forum

3.2 The Semantic Web and Semantic Web Ser-
vices

The W3C published its semantic web roadmap [2] in 1998.
Since then, there has been much activity in this area. The
promise is an approach that “instead develops languages for
expressing information in a machine processable form” [2],
rather than the current web which is geared more to human-
to-human interaction.

Machine understandable information, according to the road-
map, is presented in a basic assertion model: the Resource
Description Format, or RDF. The basic model contains as-
sertions (Subject-Verb-Object statements), and quotations,
which are assertions about assertions [2]. An example men-
tioned earlier is the fragment of RDF code about the creator
of a resource. In that example, one such S-V-O statement
would be “Eric Smith is-full-name-of-creator-of resource x”.
Because of this very basic model, the language is limited
in what it can do. The authors point out that it does not
contain any concept of negation or implication; these and
other limitations are addressed in the languages that have
been built on top of RDF: DAML+OIL [9], OWL [15], and
OWL-S [6]. RDF is built on top of XML. An example of
RDF markup can be found in Figure 4.

RDF Schema is a language for describing RDF vocabular-
ies, and it provides a way to talk about RDF resources in
known terms [4]. Though it provides a mechanism for writ-
ing ontologies, it is rather minimal. It allows for classes,
subclasses, and inheritance, but does not allow for element
cardinality (necessary if talking about booleans, real num-
bers, and so on).

DAML, the DARPA Agent Markup Language, is a language
built on top of RDF. In addition to the advantages provided
by RDF, DAML+OIL (the DAML language plus the Ontol-
ogy Inference Layer) provides a number of useful constructs.
At a basic language level, it contains things such as bounded
lists, basic datatypes (through the use of XMLSchema), and
enumeration of data values. At a logical level, it provides
negation (through the use of the <daml:ComplementOf>
tag), disjunctive and conjunctive classes, as well as neces-
sary and sufficient conditions for membership, and inverse
and transitive properties. RDF and RDF Schema have none
of these things. RDF and DAML are well-supported in pack-
ages such as HP Labs’ JENA library, which provides classes

for RDF, DAML, and other languages. A good analysis of
the features of DAML+OIL, as well as how it compares to
other semantic markup languages, has been done by Gil and
Ratnakar [8].

OWL-S, a language that has been getting much attention
lately, is the Ontology Web Language for Services, and at the
time of writing is at version 1.0. For all previous versions,
it was known as DAML-S. The aim of OWL-S is to define
an ontology for web service discovery, composition (using
multiple services together in such a way that it appears as
only one to the user) and interoperation, invokation, and
execution monitoring [6]. The authors admit that no work
has yet been made on the last point, but that it should be
included anyway because they felt it was important. Their
structuring of the ontology is motivatated by the need to
provide what the service requires of the user, and what it
provides for them; how the service works; and how it is used
[6].

The service profile describes what the service does. This
is interesting because it provides the sort of information
needed by, as the authors put it, “a service-seeking agent”
[6]. Traditionally, this sort of information would be semantic-
less and stored somewhere in a UDDI registry: perhaps a
fragment of text like, “a dictionary service for Irish Gaelic.”
OWL-S provides authors of web services a way of describing
their services semantically, so that search-agents or the like
don’t have to guess by looking for keywords.

The service model describes what happens when the service
is carried out. As the authors point out, it could potentially
be used by service-seeking agents for a second tier of decision
making [6]. Should a service’s profile match that which the
service-seeking agent is looking for, the agent could examine
several candidates’ models as a consideration for which one
to choose.

Finally, the service grounding specifies exactly how a web
service may be accessed. A grounding will typically spec-
ify “a communication protocol, message formats, and other
service-specific details such as port numbers used in con-
tacting the service” [6]. This seems at first glance to be
similar to WSDL, and the authors later confirm that “a
OWL-S/WSDL grounding uses OWL classes as the abstract
types of message parts declared in WSDL, and then relies
on WSDL binding constructs to specify the formatting of



<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">

<contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">

<contact:fullName>Eric Miller</contact:fullName>

<contact:mailbox rdf:resource="mailto:em@w3.org"/>

<contact:personalTitle>Dr.</contact:personalTitle>

</contact:Person>

</rdf:RDF>

Figure 4: RDF Code Describing the Creator of a Web Resource

Figure 5: The Service Profile, Model, and Ground-
ing of OWL-S

the messages.” The OWL-S service grounding is not meant
to replace WSDL, but rather to complement it, as “the two
languages do not cover the same conceptual space” [6]. Both
OWL-S and WSDL are languages built on top of XML, so
it is easy to build some OWL-S constructs on top of WSDL.
The three core features of OWL-S, the service profile, model,
and grounding, are shown in Figure 5. The diagram is sim-
ilar to one found in “OWL-S: Semantic Markup for Web
Services” [6].

OWL, the Web Ontology Language provides three sublan-
guages. The first, OWL Full, provides no guarantees as to
the computability of any conclusions within the language.
The second, OWL DL, provides less expressiveness than
OWL Full, but is guaranteed to be decidable. The third,
OWL Lite, is a minimal sublanguage designed for, as McGuin-
ness and van Harmelen put it, “those users primarily needing
a classification hierarchy and simple constraints” [15].

That there are several sublanguages to select from is indica-
tive of the fact that different needs are served by different
languages. This is not only true of the OWL sublanguages,
but also of the semantic markup languages in general. The
choice of which language to use is an important application-
specific decision to be made by the application designer.

McIlraith et al. address this issue in “Semantic Web Ser-
vices” [16]. In it, the authors describe their system, which
uses semantic markup in DAML+OIL to mark up a number
of existing commercial web services: Yahoo’s driving direc-
tion information service and United Airlines’ flight booking
service. Their markup provides declarative advertisements
of the service, like the service profile of OWL-S; declarative

APIs, built on WSDL, to allow for automatic service exe-
cution; and finally, specifications of the pre-requisites and
consequences of individual service use necessary for auto-
matic discovery, composition, and interoperation [16].

The authors make a strong case for the use of DAML+OIL
for web services. RDF, they argue, is insufficient as a gen-
eral semantic markup language due to its lack of expressive
power and an underspecified semantic [16]. Since the pa-
per was written in 2001, however, RDF’s semantics have
been undergoing constant extension and revision. The cur-
rent W3C Recommendation on RDF Semantics dates from
February 10, 2004. Prior to that revision, the previous rec-
ommendation dated from December 15, 2003. RDF is one
of the central building blocks of the semantic web, and the
W3C remains committed to making it better. That several
semantic markup languages use it as its base is testament
to the strength and elegance of RDF’s basic representation
model, and of its extensibility. That said, it is probably not
suitable for all applications. OWL-S and DAML+OIL are
built on top of RDF for a reason. They offer more function-
ality than RDF. However, there is an increased overhead,
and in some cases, no guarantees as to computability. The
choice of which markup language to use should be made on
a case-by-case basis, taking into account the needs of the
system.

Semantic web languages and ideas can be used to tackle the
selection problem, as mentioned earlier. Maximilien and
Singh write of a system whereby agents serve as proxies for
web services [14]. The agents select services based on rep-
utation, making their choices by talking with other agents
about reputations of services, with unknown services be-
ing selected if they are recommended by trusted third-party
agents. Discovery of these services occurs through UDDI
registries that have been augmented to allow ratings based
on QoS attributes.

The languages of the semantic web provide the ability to
both reason about marked-up data, as well as simply to
classify, allowing for multiple implementations to talk about
the same qualities through use of data ontologies. They
build on each other. XML is the foundation, with RDF built
on top of that. RDF Schema is built on RDF. OWL and
DAML build on RDF and RDF Schema, and OWL-S builds
on OWL. The use of these languages can be of great benefit,
allowing heterogenous systems to talk about resources using
the same set of terms and facilitating intercommunication.

3.3 Reasoning with Expert Systems



An expert system, according to Peter Jackson, is “a com-
puter program that represents and reasons with knowledge
of some specialist subject with a view to solving problems
or solving advice.” [11] An expert system “simulates human
reasoning about a problem domain, rather than simulating
the domain itself,” and solves problems by “heuristic or ap-
proximate methods which, unlike algorithmic solutions, are
not guaranteed to succeed.” [11]

Most rule-based expert systems now use the RETE algo-
rithm [11]. This algorithm is efficient for pattern-matching
due to a tree-structured sorting network that reduces the
number of iterations over productions. The algorithm, ex-
plained by Jackson, works as follows: patterns on the left-
hand side of the production are compiled into the network.
Then, the match algorithm computes a conflict set (a set of
elements that, given the current conditions, cannot be all
working correctly) for the current cycle by processing the
network. The iteration on the working memory between cy-
cles is eliminated due to the processing of a set of tokens
which indicate which patterns match various elements of
the working memory. This set of tokens is updated when
the working memory changes [11].

4. APPROACH
As described in Section 2, my approach to the selection
problem is to build on to an existing web service client an
augmentation that allows for reporting of, and reasoning
on, the user’s experience in using particular web services.
These web services currently must be syntactically identi-
cal, though this could be changed in future versions of the
system; see Section 7.

The two main parts of the system are the augmented client
and the QoS forums. The web services are not modified at
all, and can be seen to be separate from the rest of the sys-
tem. The representation of QoS data, the semantic models,
bear detailed explanation.

4.1 The Semantic Models
The semantic models model interactions between the client
and a web service. Each client may have zero or more mod-
els; in fact, if the client updates far less frequently than it
interacts (these are discussed further in Section 4.2), then it
may have many semantic models.

Each semantic model contains a number of properties. For
the purposes of the current implementation of the system,
generic QoS parameters were chosen so that they can be
applied to any web service:

• Availability measures whether or not the client can
connect to the web service. It takes a value of 0 (can-
not connect) or 1 (able to connect).

• Reliability refers to whether the operation the client
wishes to perform can be performed, and whether or
not it returns the type it was specified to. It takes a
value of 0 (unable to perform the operation, or received
a bad return type) or 1 (able to perform the operation
and got the specified type in return). If a service is
not reachable, the reliability is assumed to be 0 for
that interaction.

• Execution Time is the time, in seconds, that it takes
to attempt to access the service, perform the requested
operation, and get a value in return.

For reliability, the specified return type is the one speci-
fied in the WSDL file used to build the client. The client
uses WSDL2Java in the Apache Axis libraries to create the
classes used to access the web services. Access methods
are created based on the WSDL file available at generation-
time. It is certainly possible that operations on the web
service could change signatures, or even be removed, after
the access objects have been generated.

It should be noted that execution time may be lower when
failure occurs than when accessing a reliable service has oc-
curred. Because of this, the default weights on execution
time tend to be much lower than that of availability and
reliability. These weights are specified in an external file
editable by the user.

These parameters were chosen because they were generic
enough that they could be applied to any web service. Be-
cause they are so generic, future versions of this system could
use the same basic model, but extend it to add more generic
parameters, or include domain-specific ones.

From the beginning, my goal was to use semantic markup
languages for the semantic models. The basic premise of
my work, web service selection by using QoS parameters,
has been explored at least once before (though in a different
way), by Liu et al. [12]. They do not, however, make use
of semantic markup, nor of client-side reasoning, which is
discussed in Section 4.2. Because web services are web-based
– that is, they communicate over HTTP using structured
XML – and because much work has already been done in
developing languages to describe web-based resources, the
choice was made to represent the models with one of the
popular semantic markup languages.

RDF was chosen to act as the underlying representation for
the data, with an ontology describing the data written in
the OWL Lite sublanguage. Because all that was needed
was a simple classification hierarchy and simple datatype
restrictions, and because the external reasoning was done
with the JESS engine, OWL Lite seemed more appropriate
than the bulkier OWL DL or OWL Full. RDF Schema was
a possibility for writing the ontology. However, it does not
allow for cardinality constraints on values, which is required
when talking about various parameters. At the moment,
these parameters are only boolean and real numbers, which
have specified mappings within XML Schema. However, for
complex datatypes, this is not the case, and it would be
useful to specify constraints if future versions of the system
were to progress in that way. The clients could talk about
various parameters and not have to worry about checking to
see if the value of certain parameters falls within the required
range. As such, OWL was chosen over RDF Schema as the
ontology language for the semantic models.

4.2 The Augmented Client
The augmentation currently consists of three parts:



Figure 6: The Automated I-Help Client with Aug-
mentations

1. A policy manager acts as a coordinator of the client’s
calls with updates to the QoS system.

2. A number of stored semantic models each capture one
interaction with the client’s web service.

3. A reasoning engine is capable of taking in a list of
semantic models, extracting information from them,
and based on its analysis, selecting the service best for
the user.

The policy manager controls such aspects as how often the
client makes calls to the web service, and how often updates
are sent to the central QoS forums. In a system where a user
would be using the client (rather than my current automated
client), the policy manager would only control how often
updates were sent to the QoS forums, leaving the use of the
web service to the user.

When the client is first started, the policy manager connects
to the QoS forum, and queries them for all the information
stored about a number of user-supplied web service loca-
tions. The QoS forum returns a vector of semantic models,
each of which represents one interaction with a web service
by a particular client.

This information is then passed to the reasoning engine. The
engine is an expert system written in JESS, the Java Expert
Systems Shell. JESS was chosen for a number of reasons.
First, expert systems are a well-known and well-studied area
of AI, and are suitable for reasoning over a number of rules
and facts. Second, the RETE algorithm has been shown to
be fast and efficient for large data sets [7]. Scalability of rule-
and fact-sets was an important consideration in choosing a
reasoning method. While the current rule- and fact-sets are
relatively small, the ability to scale up to dozens or hundreds
of rules without a significant increase in cost was important.

The first thing the reasoning engine does is take in the infor-
mation about the web services’ availability, reliability, and
execution time. It processes these into separate data struc-
tures, and then based on user-specified weights, creates a
weighted sum for each:

Pn
i=1 wxxi

In this equation, wx is the weight for QoS parameter x. xi is
the ith reported parameter x for the web service whose data
we are currently processing. From there, we have a simple
evaluation: take the highest weighted sum as best.

The current simple evaluation rule is as follows:

(defrule updateBestWS

(and (ws ?x ?y) (best-time ?z)) =>

(try-update ?x ?y ?z))

(deffunction try-update (?x ?y ?z)

(if (> ?y ?z) then

(and (retract (fact-id ?bt-id))

(retract (fact-id ?bs-id))

(bind ?bs-id (assert (best-service ?x)))

(bind ?bt-id (assert (best-time ?y)))

)))

The facts for the JESS reasoning engine are generated at
runtime. Because the augmented client does not know be-
forehand what services it may select from, the reasoning en-
gine generates the facts based on the information provided
to it from the QoS forums. The facts have the following
basic form:

(assert (ws http://ws.location... 3.78))

The first part of the triple is the indication that this fact is
about a web service. The second part is the location of the
web service. The third is the weighted sum as computed by
the reasoning engine earlier.

The system also keeps track of the best service as follows:

(bind ?bs-id (assert (best-service http://...)))

(bind ?bt-id (assert (best-time 0)))

These allow us to keep track of the best service (with bs-
id) and the best weighted sum (bt-id). The clients have
built into them an initial web service location, which is ini-
tially taken to be the best service. If our information shows
that another service is better than the default weighted sum
(taken to be 0 in the current implementation), then the
RETE algorithm will match the facts against the rules, and
update the best-service and best-time tuples. Once JESS
has been allowed to run on these facts and rules, the rea-
soner extracts best service location from the best-service
tuple. This is the service that the reasoner has computed to
be best for the client. This value is returned to the client,
and if it is different from the current web service, the client
is switched over to the new service.

From there, execution continues as normal on the best web
service. Semantic models are stored each time an interac-
tion is made, and when the policy manager indicates that



the system is ready to update, it contacts the QoS forums
to upload the semantic models. This process is more fully
described in Section 4.3.

4.3 The QoS Forums
The QoS forums are a web service designed to store informa-
tion about clients’ experience with particular web services.
A web service is wrapped around a database which stores
semantic models reported to the service.

The semantic models, as explained in Section 4.1, are a com-
bination of RDF and OWL. Besides these, the forums also
keep track of the date, the sender’s IP address, and the web
service’s location. The first two are tracked because if the
system is expanded in the future, they could provide useful
information in addition to what’s already in the semantic
model. The reasoner could find out, for example, all clients
reported that a web service x was not available on a certain
day, and perhaps conclude that this is an exception rather
than the rule. Alternatively, if one IP range keeps reporting
experiences that are wildly different from every other client,
and at a much higher rate, it might bias its calculations
against that IP range, concluding that it is flooding the fo-
rums. At the moment, however, the reasoner is not capable
of making realizations such as this. The last feature kept,
the web service’s location, is just so that the database can
more easily return ranges of semantic models, rather than
all of them.

Currently, the forums are centralized: they are a single
web service wrapped around a database. A future exten-
sion might be to have decentralized storage, with each client
maintaining a database of its own experiences. That way,
a single point of failure would be eliminated, though at the
cost of additional overhead in retrieving data.

5. EXPERIMENTATION
5.1 Dynamic Service Selection
To prove that the system implemented all the concepts dis-
cussed earlier, clients were written for the I-Help web ser-
vices. I-Help is a system designed by the ARIES laboratory
at the University of Saskatchewan. Its purpose is to allow
students to find help for problems relating to their com-
puter science courses. Recently, it has been extended into
web services, allowing for posting, reading, and other oper-
ations without having to use the traditional web-page-based
interface.

In addition to the main I-Help web service, two replicates
were created. These replicates vary from the main service
in the amount of time they take to process requests. Clients
were generated to use each service, and 500 semantic models
for each service were submitted to the QoS forums through
the clients’ interactions with the I-Help services.

The statistics for the main service and its two replicates are
found in Table 5.1. ā, r̄, and ē refer to the mean availability,
reliability, and execution time, respectively. σa, σr, and σe

refer to the standard deviation of the availability, reliability,
and execution time.

Each client gathered data over the course of about six hours.
As can be seen from the data, no service had 100% uptime.

Main Service Replicate A Replicate B
ā .814 .964 .978
r̄ .814 .964 .978
ē 4.672 7.93 9.774
σa .389 .187 .147
σr .389 .187 .147
σe 2.46 9.970 2.143

Table 1: Data Gathered About The Web Services

There were a number of crashes. Whenever this happened,
the services were promptly rebooted. Thus, there was im-
perfect availability and reliability.

Code was used on the client side to simulate network delays
and server-side slowness. The first service was the quickest,
followed by the first and second replicates. However, repli-
cate A varied greatly in its execution times, as can be seen
by its standard deviation.

When the default weights were defined, execution time was
deemed to be most important; however, availability and re-
liability weren’t to be sacrified either. The default weight
for both availability and reliability is 10; the default weight
for execution time is -2.

With these weights defined, the service the client should
have reasoned to be best, given the reasoning rules from
Section 4, is the original I-Help web service, as the weighted
sums for the original service and its replicates are 6.935,
3.410, and 0.0111, respectively. When the client ran, gath-
ered this data, and ran it through the expert system, it found
that the original I-Help web service provided the best ser-
vice, and transparently switched over to that service. The
client was originally generated to run on one of the repli-
cates.

5.2 Scalability of the Clients
As seen in the previous section, the proof-of-concept works
as intended. The next question, though, is to determine how
well these clients could scale up in usage.

To judge the scalability of the clients, there are four iden-
tified parameters to be studied in terms of resource con-
sumption. The first is the query cost. The query cost is the
cost incurred when the system queries the QoS forums for
information on a particular web service. The second is the
analysis cost, which is the cost of taking the data provided
by a query, parsing it in such a way that the JESS reasoner
can make sense of it, and running the JESS-ready facts and
rules. The third is the monitoring cost, which describes the
cost of monitoring calls to the web service, and preparing
a semantic model based on the findings. The fourth is the
reporting cost, which specifies what is required to report the
monitored data to the QoS forums.

To judge these parameters, two factors were considered:
first, how often they are used by the client; and second,
where the main bottleneck lies. The result can be seen in
Table 5.2.

The number of times these parameters are used is due to



Cost Times Used Bottlenecks
query constant memory, bandwidth
analysis constant memory
monitor varies by calls memory
report varies by policy bandwidth

Table 2: Bottlenecks of the Identified Parameters

the design of the system. Currently, selecting the best web
service is a one-time event done just after the client starts
up, and the analysis, done after the data arrives, also occurs
only once. However, the bandwidth and memory require-
ments can be rather steep. In our test cases, 500 semantic
models for each service were stored. The bare XML repre-
sentation of the models (not the objects in the system, which
would have a greater size) had a mean size of 3.7KB. 500
such objects would then take at least 1.81MB if only their
XML structure were stored. But when each is wrapped in
a Java object, and all of those objects are stored within a
vector, the memory costs suddenly jump by 7.1MB. This
was not a huge amount on the main development machine;
however, transferring that amount of data over the network
is not insignificant. As the amount of interactions increases,
the amount of data sent over the network will only increase,
as will the memory consumption by the client. This is some-
thing that will need to be addressed in future versions of the
system.

Monitoring and reporting occur variably. Monitoring is han-
dled by the policy manager, and occurs each time the client
attempts to make a call on the target web service. Despite
this, though, they tend to require fewer resources than do
query and analysis. Monitoring simply creates a new seman-
tic model after a call is made, and queues it in the unsent
list of semantic models. These models are each roughly the
same size, and take a fixed amount of time to create. Re-
porting occurs whenever the policy manager says to (at the
moment, this occurs at the same time interval as calling the
service). It takes no more memory than does monitoring,
but bandwidth is a potential bottleneck, especially if large
numbers of semantic models have been stored but not sent.

While the concept implemented in the system could be scal-
able, there are a number of issues that would need to be ad-
dressed. There is a large memory and bandwidth overhead
when reasoning about the best service that will only grow
with increased numbers of interaction snapshots within the
QoS forums. However, the rest of the interactions should go
smoothly, as the costs of monitoring and reporting are fairly
negligable.

6. CONCLUSIONS
The process of selecting a web service does not have to be a
static, design-time decision. Instead, it can occur dynami-
cally, with web service clients deciding which service to use.
In this implementation, web service clients reasoned over
the experiences of others clients as to which service to se-
lect. The experiences concerned generic QoS parameters:
availability, reliability, and execution time. To represent a
model of its knowledge, the clients in the implementation
used a combination of RDF and OWL. These experiences
were stored in a central forum system available as a web

service to any interested party. To reason about the best
service, an expert system, written in JESS, was used to an-
alyze the data received from the QoS forums. When done,
the client was updated to call the new web service.

This approach, while generally good, only suffered from a
few issues relating to scalability. The clients operated on
an “all knowledge is potentially useful” assumption, which
meant that they requested all of the interaction snapshots
from the QoS forums. If the forums had hundreds or more
interactions stored about a particular web service, the anal-
ysis process would take a noticeable amount of time as the
data from the semantic models had to be first parsed by
the reasoner, and then reasoned over. However, this is a
one-time cost incurred when the client starts up, and the
variable-time occurances of both monitoring and reporting
had far fewer costs associated with them. Overall, the ap-
proach of reasoning over experiences seems a promising one
for the problem of web service selection.

7. FUTURE WORK
In this paper, the web service selection problem was tack-
led purely from a past-experience standpoint. There were
other approaches that, for the purposes of time, were ne-
glected: for instance, negotiation, or semantic suitability.
In the future, the system could be extended to have full
OWL-S descriptions for the web services to fully talk about
what they offer, and have the clients take that into consider-
ation, too. In the case where there is a cost associated with a
web service, the clients could perhaps also apply negotiation
strategies.

As for the forums themselves, they are currently a stand-
alone web service. There are currently no mechanisms in
place to prevent flooding of the database with bogus seman-
tic models, as there are in Liu, et al [12]. One possibility
would be to set up a peer-to-peer-like forum system in which
each client contains its own database and stores its own
experiences, but no-one else’s. This, combined with trust-
based rules in the expert system, would allow for the clients
to build trust-based networks of various clients in which
clients that offer advice radically different from the others
could be placed under closer scrutiny. As for the semantic
models, future versions of the ontology could be extended to
allow for more generic, or possibly domain-specific, param-
eters.

A major assumption in my work is that all clients are op-
erating under the same circumstances. Information about
the clients’ experiences are kept and stored, but not informa-
tion about the context of the clients themselves. Information
such as available memory, CPU load, number of running pro-
cesses, and network connection speed, among other things,
would be extremely valuable in the reasoning process, but
are not included in the current version of the system.

Currently, the user specifies his or her preferences by way of
weights. Another way of doing this would be by using a set of
constraints. At the moment, the user places higher weights
(or in the case of execution time, lower) on parameters that
he or she believes to be most important. It might be more
intuitive for the user to instead express his or her preferences
through constraints: for example, “find me a web service



which has 95% availability, 100% reliability, and a mean
execution time of less than eight seconds”. In cases where
no constraints are satisfied, the service which violates the
fewest number of the user’s constraints could be selected.

The approach taken, that being evaluation of experiences,
relies on the user supplying choices of web services. This
approach could be combined with conventional UDDI or
OWL-S technology to abstract away one more level from
the programmer. The client could get a list of prospective
web services from a UDDI registry or OWL-S profile server.
In this way, the client could get not just others’ experiences
with web service locations, but what those web services actu-
ally purport to provide. Also, combining this approach with
client examination of a service’s OWL-S service grounding
could tell the client whether the service is syntactically iden-
tical to the others considered, which is a current requirement
of the system.

Finally, there is the matter of bandwidth. XML-based lan-
guages are an excellent basis for description, but suffer from
all the extra space that the tags take up. A possible ex-
tension of the QoS forums and the clients could be to send
their experiences in a compressed format, if it were found
that it would be faster to compress/send data/decompress
than simply to send data. The QoS forums could also be
modified to not send all the data known about a particu-
lar web service. This would alleviate strains on the client’s
memory usage, as well as bandwidth.

8. ACKNOWLEDGEMENTS
I am indebted to Chris Brooks for setting up, and providing
the interface to, the I-Help web services. I would also like
to thank fellow graduate students whose discussions on web
services and my research has been extremely valuable: Chris
Brooks, Kamal Elbashir, Tay Hock Keong, Mike Winters,
and Chris Wormon.

9. REFERENCES
[1] Bellwood, T., Clement, L., and Claus von

Riegen, E. Uddi version 3.0.1.
http://uddi.org/pubs/uddi v3.htm.

[2] Berners-Lee, T. Semantic web road map.
http://www.w3.org/DesignIssues/Semantic.html,
September 1998.

[3] Box, D., Ehnebuske, D., Kakivaya, G., Layman,
A., Mendelsohn, N., Nielsen, H. F., Thatte, S.,
and Winer, D. Simple object access protocol (soap)
1.1. http://www.w3.org/TR/2000/NOTE-SOAP-
20000508/.

[4] Brickley, D., and Guha, R. Rdf vocabulary
language description 1.0: Rdf schema.
http://www.w3.org/TR/rdf-schema/.

[5] Christensen, E., Curbera, F., Meredith, G., and
Weerawarana, S. Web services description language
(wsdl) 1.1. http://www.w3.org/TR/wsdl.

[6] Coalition, T. O. S. Owl-s: Semantic markup for
web services.
http://www.daml.org/services/owl-s/1.0/owl-s.pdf.

[7] Forgy, C. Rete: A fast algorithm for the many
patterns/many objects match problem. Artificial
Intelligence 19, 1 (1982), 17 – 37.

[8] Gil, Y., and Ratnakar, V. A comparison of
(semantic) markup languages). In Proceedings of the
15th International FLAIRS Conference (2002).

[9] Horrocks, I., van Harmelen, F., and Peter
Patel-Schneider, e. Daml+oil.
http://www.daml.org/language/.

[10] Hugo Haas, A. L. Web services activity statement.
http://www.w3.org/2002/ws/Activity.

[11] Jackson, P. Introduction to Expert Systems, Second
Edition. Addison-Wesley Publishing Company, 1990.

[12] Liu, Y., Ngu, A., and Zheng, L. Qos computation
and policing in dynamic web service selection (to
appear). In Proceedings of the WWW 2004 (May
2004).

[13] Manola, F., and Miller, E. Rdf primer.
http://www.w3.org/TR/rdf-primer.

[14] Maximilien, E. M., and Singh, M. P. Agent-based
architecture for autonomic web service selection. In
Workshop on Web Services and Agent-based
Engineering at Autonomous Agents and Multi-Agent
Systems (2003).

[15] McGuinness, D. L., and van Harmelen, F. Owl
web ontology language overview.
http://www.w3.org/TR/owl-features/.

[16] McIlraith, S., Song, T. C., and Zeng, H.
Semantic web services. IEEE Intelligent Systems 16, 2
(March/April 2001), 46 – 53.

[17] Mitra, N. Soap version 1.2 part 0: Primer.
http://www.w3.org/TR/soap12-part0/.

[18] Winer, D. Xml-rpc specification.
http://www.xmlrpc.com/spec.


