
 1

Scheduling Policies for Enterprise Wide Peer-to-Peer
Computing

Adnan Fida
Department of Computer Sciences

University of Saskatchewan
57 Campus Drive

Saskatoon, SK, Canada
+1 306 966-4886

adf428@mail.usask.ca

ABSTRACT
Peer-to-Peer (P2P) computing is a distributed computing
paradigm which considers unreliable peer collections as target
platform for application execution. In this paper such collections
are considered in the context of enterprises. Unlike other P2P
scenarios, more control and knowledge is available in regards to
peers. This paper focuses on application task scheduling for such
environments. Environment and application characteristics are
identified and used to develop a set of characteristics for task
scheduling policies. This characteristic set is then used to survey
scheduling policies in similar distributed computing paradigms to
find their relevance for enterprise P2P computing. A proof of
concept simulation is presented for selected scheduling policies to
outline some of the implementation decisions and validate the
enterprise P2P computing paradigm.

General Terms
Algorithms, Design, Experimentation, Theory.

Keywords
Enterprise P2P Computing, Application Task Scheduling.

1. INTRODUCTION
The term Peer-to-Peer (P2P) computing has been around for at
least seven years and has been defined and explored in many
different ways. Typically any computing resource aggregation
over a network which contributes towards a specific global task
can be referred to as P2P computing. Generally, P2P computing is
intended for data sharing, collaborative activities, and resource
sharing such as CPU and disk space. There exists a wide range of
variations among P2P computing environments in terms of size,
scope, and characteristics [1]. For the purpose of this discussion,
P2P computing is referred to as enterprise P2P computing, for
reasons described below.
Currently enterprises such as businesses, educational institutes,
and governmental organizations have collections of computing
resources, such as desktops, which are often underutilized. For
example, in a computing lab at a university, all desktops are not
continuously being used and students login to desktops at random
intervals and remain logged in for variable amount of times.
Overall only a fraction of these desktops will be used and the idle
desktops can be pooled. Each desktop (or other computing
resources) in such pools can act as a peer. The peers collaborate
with each other to achieve a common goal. Underutilized

collections of computing resources present a viable opportunity
for applications that can benefit from such an aggregation of peer
computing power. Some examples of applications and areas
which can benefit from enterprise P2P computing are simulations,
financial risk modeling, and bioinformatics. Moozakis [2]
describes some of the results from an enterprise P2P computing
environment consisting of 100,000 desktop based peers. This
environment allows complex and time consuming number
crunching application execution for an aircraft engine modeling
purposes. This rather extreme implementation of enterprise P2P
computing has achieved 85% desktop processor utilization, which
had been previously averaged at 5%.

However, in such computing environments, peer availability is
unpredictable and therefore unreliable since local peer owners
(students or employees) can take over the control of any resource
at anytime.

In an enterprise information is either available or can be collected
about peers, users, and their environment. The total number of
peers that can be pooled together is known and can be considered
as a fixed set such as P = {p1, p2, p3, …, pn}, where n is total
number of peers. For each peer p in set P, its configuration can be
described as a tuple <software, hardware>, where software is a
tuple of <OS, applications, data> and hardware is a tuple of
<memory, CPU, disk>. Each peer p can be either available or
unavailable at any moment in time (availability state). Overtime,
this availability state can be determined for all peers in P. This
availability model can then be used during application execution
to compensate for the unreliable nature of peers. Other
infrastructure information such as peer network topology, and
peer access control are also known. Given this information, one or
more applications can be developed and deployed in such
computing environments. For an application set such as A = {a1,
a2, a3,…, am}, where m is total number of applications, each
application can consist of more than one tasks. Every a in A can
be specified as a set of tasks {t1, t2, t3,…, tj}, where j is total
number of tasks for application.
Presence of this information makes enterprise P2P computing
different from other types of P2P environments [1]. In addition,
an enterprises owns all of the peers in set P= {p1, p2, p3,…, pn}
and therefore, can provide guidelines for configuration, and
operation of peers. Together this extends greater overall control to
distributed applications set A = {a1, a2, a3,…, am} for their
development, deployment and execution.

 2

One of the requirements for application execution in such
environments is to schedule all the of application tasks {t1, t2, t3,
…, tj} across peers {p1, p2, p3, …, pn} with peers in an available
state. This requirement can be further extended to simultaneously
schedule tasks sets of more than one application in {a1, a2, a3,…,
am}. Scheduling in distributed computing is a well studied area
which has resulted in a diverse set of scheduling policies for
various paradigms of distributed computing including Grid [3],
Web-based computing [4], and domain specific heterogeneous
distributed computing [5]. However, task scheduling for
enterprise P2P computing is still an open issue. Due to the
similarities between enterprise P2P computing and the above
mentioned distributed computing paradigms, it is useful to
examine existing scheduling policies in these domains to study
scheduling policies for enterprise P2P computing. Since enterprise
P2P computing is a fairly new concept with only a few (if any)
real world deployments there is lack of available data to perform
empirical studies. At this point, simulation based studies are the
best available option.

In this paper a survey of existing scheduling policies for various
distributed computing domains is presented. The remainder of this
paper is organized as follows; section two, three, and four present
characteristics of the enterprise P2P computing environment,
applications and scheduling policies, section five, and six provide
survey of existing scheduling taxonomies and policies, section
seven presents proof of concept simulation, section eight
concludes paper, and section nine contains references.

2. ENTERPRISE P2P ENVIRONMENT
In addition to the unreliable nature of enterprise P2P computing
environments, there are other relevant issues that require
awareness as well. Milojicic et al. [1] and Barkai et al. [10] name
the following issues:

Heterogeneity; P2P computing environments are distributed in
nature and they are generally formed of heterogeneous
nodes/peers. The configuration peer tuples such as <OS,
applications, data> and <disk, CPU, memory> often differ
significantly even in an enterprise.

Autonomy; every peer is autonomous for its local users. That is,
distributed application task will be superseded by tasks invoked
by local user of peer. This autonomous nature of peers can lead to
an unavailable state of the peer.

Scalability; in an enterprise P2P computing environment the size
of pooled peer set P = {p1, p2, p3, …, pn} can be very large (n up-
to thousands) and therefore, such environments require supporting
mechanisms for distributed application execution. These
mechanisms need to consider peer and task communication
overhead, and some sort of load balancing across peers.

Security; although all of the peers belong to the same enterprise,
due to local user autonomy, there are user concerns regarding
what applications can access while executing on peers. For
example, applications may need to ensure that they will not affect
peer configuration for tuples <OS, applications, data> and <disk,
CPU, memory>.

Performance & Cost; some performance and cost metrics are
necessary for enterprise P2P computing environments in order to

qualify them as viable alternative to equivalent centralized and
expensive solutions.

State; in an enterprise P2P computing environment state
information is available, since all of the peers in such
environments are owned by the enterprise. As previously
described state information can include peer availability at any
instance in time, peer configuration and operational policies.

Other issues that arise due to unreliable nature of computing peers
are:

Fault Resilience; mechanisms are required to handle faults
generated by peers. Faults are generally generated when a peer
changes is state to unavailable due to local user.

Transparency; fault resilient mechanisms are desired to take
transparent actions for application tasks and should not require
monitoring. However, in some cases it is possible to generate
alerts to notify administrators when human assistance is required.

3. APPLICATIONS
Application development and deployment for enterprise P2P
computing environments is rather challenging due to the
unreliable nature of the peers. Applications not only have to
exhibit some degree of parallelism, but also need to account for
the notion that a task executing on a certain peer may fail or stop
when a peer changes its state from available to unavailable due to
interruptions by a local user. There are several characteristics for
applications in such environments and some of the major ones
are:

Parallelism; number of tasks in the application task set {t1, t2, t3,
…, tj} that can be mapped to peers with an available state in {p1,
p2, p3, …, pn} simultaneously, specify the degree of parallelism
for each application. Parallel tasks do not depend on each other to
begin execution however they may communicate with each other
during their execution. Since task scheduling and communication
overhead can be larger than task execution overhead for a large
peer set, a relatively high degree of application task parallelism is
desired for an application in an enterprise P2P computing
environment.

Type; application task’s can be compute-intensive, data-intensive
or of both types. Compute-intensive tasks either run large
complex computations or have large set of computations to
process. Data-intensive tasks need to analyze large sets of data.
Depending on type of applications task sets, different scheduling
policies maybe required for each type.
Size; application size matters in enterprise P2P computing and
can be measured as a size of application task set {t1, t2, t3, …, tj},
where j is total number of tasks for an application. Each task t
itself has its own execution length as well that contributes to the
overall execution length of an application. Generally, large size
and highly parallel applications are favorable for enterprise P2P
environments otherwise small size applications may suffer form
the implementation overhead in such environments.
Task Dependencies; application tasks in set {t1, t2, t3, …, tj}
may depend on each other for execution and these dependencies
can range from fully independent tasks to highly dependent tasks.
Applications whose tasks are highly dependent on each other for
execution may have a low degree of parallelism and therefore,
may not be able to take advantage of all available peers.

 3

Data Availability; data-intensive tasks execution will be affected
if their assigned peer does not have the data required for
processing locally. For a large size compute-intensive application
data communication overhead can be significant and therefore,
task scheduling for such application types must consider data
availability in its decision making.
Given the above mentioned characteristics applications with a
high degree of parallelization and moderate data requirements are
the most suitable candidates for enterprise P2P computing
environments. Tasks for such applications can be scheduled
(using some auxiliary policy) across all peers for execution. Peers
can complete their assigned tasks during their idle time. The
average time interval for which peers are available is an important
factor when deciding on applications for such environments. If the
average task completion time is larger than the average peer
availability time, then the application completion time may rise to
a point where it may not be feasible to schedule such an
application. Large size applications with some degree of inter-task
dependencies and/or data requirements may become suitable for
enterprise P2P computing environments, if more sophisticated
supporting mechanisms are available. For example, fault-
tolerance mechanisms which are either able to retain task state
and optionally able to migrate task to another available peer, can
allow less interrupted overall application execution.

4. TASK SCHEDULING
Task scheduling for enterprise P2P computing is a two step
process; in the first step the peer selection decision is made and in
the second step the assigned peer decides the order in which the
tasks are to be executed. Since the second step is similar to
scheduling in non-distributed computing, it is not of interest for
this discussion. Only the first step is considered for rest of this
discussion. More formally, scheduling in an enterprise P2P
computing is a problem of mapping a set of tasks {t1, t2, t3, …,
tm} to a set of peers {p1, p2, p3, … pn} for some enterprise goals.
Enterprise goals can include reduced application completion
times, better resource utilization, and reduced hardware costs.
Given the enterprise P2P computing and application
characteristics in the previous sections, task scheduling for
unreliable peers becomes a challenging task. Available peers at
scheduling time may not remain available for the length of the
assigned task completion times and a task may have to be moved
to other peers during execution. Without proper attention to task
scheduling in enterprise P2P computing, the application
completion may not even be possible. Some of the characteristics
of task scheduling in enterprise P2P computing environment are:

Scheduler Organization; there are many ways on how scheduler
itself can operate in such distributed environments. Some possible
options can include dedicated peers devoted to scheduler
execution, collections of related schedulers each with unique
goals, and decentralized schedulers which may execute on every
peer and communicate with others to make scheduling decisions.

Scheduling Policy; depending on the information available for
scheduling, policies may compute schedules at the start of the
application (static) with no revisions, improve statically computed
schedules with information that becomes available at run-time
(hybrid) or only compute schedules at run-time (dynamic).

State Estimation; the unreliable nature of peers and dynamic
scheduling policies require methods for environment state

estimation (run-time information) to make mapping decisions.
These methods can be either predictive or non-predictive.

Rescheduling Approaches; improvements to computed
schedules are generally desirable due to continuous changing peer
states and approaches can be employed to initiate rescheduling.
Some of the possible options include periodic or event driven
rescheduling.

Task Dependencies; given the application’s nature, tasks may
depend (for data or coordination) on each other for their
execution. Therefore, scheduling policies need to account for
these dependencies to avoid deadlocks and to provide optimized
schedules.

Scheduling Overhead; time and memory consumptions for
computing and executing schedules adds to the overall overhead
of application execution.

Fault Resilience; unreliable peers require scheduling policies to
consider peer failure while making scheduling decisions. For
example, a dynamic scheduling policy, when selecting a peer for
task execution needs to ensure that target peer is still in an
available state. Further, a policy may also be able to reschedule a
task in case of peer failures.

Ease of Implementation; this includes scheduling policies that
can be easily implemented without requiring too much overhead.

Adaptability for Application Nature; once an enterprise P2P
computing environment is setup, it maybe required to serve as an
execution platform for more than one application. Due to the
diverse type and size of applications, the ability of a scheduling
policy to adapt to every application can further improve overall
peer utilization.
Scheduling policies either need to implement support mechanisms
themselves or rely on other available services in environments for
some of the above mentioned considerations. For example, a
scheduler needs to determine a peer state (available/unavailable)
before a task can be assigned to it. This can either be done by
polling the peer or requesting a network service to determine peer
state. Other supporting mechanisms can include task
communication, task monitoring and migration, and environment
state determination mechanisms.
Scheduling in distributed computing is a well studied area which
has resulted in a diverse set of scheduling policies for various
paradigms of distributed computing including Grid [3], Web-
based computing [4], and domain specific heterogeneous
distributed computing [5]. However, task scheduling for
enterprise P2P computing is an open issue and requires more
research. Due to similarities between enterprise P2P computing
and above mentioned distributed computing paradigms, it is
intriguing to review at existing work towards scheduling policies
in these domains. This study attempts of find existing scheduling
policies relevant for enterprise P2P computing. The study is
conducted in two phases; in the first phase existing scheduling
taxonomies are examined; and in second phase existing
scheduling policies from various similar paradigms are
investigated.

5. SCHEDULING TAXONOMIES
There have been numerous attempts to develop taxonomies for
distributed computing scheduling policies in order to compare

 4

various policies. These existing taxonomies are worth examining
for enterprise P2P computing scheduling characteristics, as
described in section four, due to the similarities of enterprise P2P
and other distributed computing environments. Further, they also
provide base for understanding and evaluation of scheduling
policies described in section 6. In this section, four such
taxonomies are presented1. In table 1, a map of enterprise P2P
scheduling characteristics to described taxonomies is presented.
Figure 1 display a classic distributed computing scheduling
taxonomy developed by Casvant et al. [9]. In addition to
hierarchical characteristics of the taxonomy, there are some flat
characteristics of taxonomies that can be applied to more than one
branch of tree simultaneously. For succinct representation of a
taxonomy the flat characteristics are omitted from the tree
structure. These additional flat characteristics include adaptive,
load balancing, bidding, dynamic reassignment, and probabilistic.
Adaptive policies dynamically make adjustments to reflect
changes in an environment. Load balancing is to increase overall
throughput by equally distributing loads across the environment.
Bidding refers to negotiation between peers generating tasks and
those available for execution. Dynamic re-assignment is the task
migration to a more appropriate peer and probabilistic policies
randomly make scheduling decision from a subset of available
options as opposed to spending time computing every possible
option.
The above mentioned taxonomy is extended by Ekmecic et al. [6]
and considers the degree of application parallelism (application
mode) and peer models. This work describes distributed
computing as a three step process of parallelism detection,
parallelism characterization, and peer allocation for task
scheduling. Further, distributed computing is classified in terms of
four combinations of application execution modes and peer (or
machine) models. These combinations are Single Execution
mode/Single machine Model (SESM), Single Execution
mode/Multiple machine Models(SEMM), Multiple Execution
modes/Single machine Model (MESM), and Multiple Execution
modes/Multiple machine Models (MEMM) are defined. Given
these four combinations, an extension of the scheduling taxonomy
[9] is developed. First two new branches of competitive and non-
competitive are added under non-cooperative to indicate nature of
interaction among scheduled tasks. Secondly, a new characteristic
of Load Sharing is introduced in the flat set of characteristics,
which refers to efforts towards utilizing underused resources.
Additionally, a middle-ware taxonomy for application and peer
interaction is also developed in terms of heterogeneity support
(network level, operating system level, and programming
language level), application development support for parallelism
characterization specifications and task scheduling issues, and
data access techniques. In table 1, the column titled ‘Casvant &
Ekmecic’ contains enterprise P2P scheduling relevant
characteristics of the above mentioned taxonomies. The extended
taxonomy covers core characteristics of enterprise P2P
scheduling; however, qualitative characteristics of ease of

1 A term of ‘resource(s)’ is used while describing these

taxonomies and for rest of this discussion to refer to both peers
and data, as both together requires consideration for task
scheduling.

implementation and application adaptability are not present in
this taxonomy.

In distributed computing, peer discovery/dissemination and state
estimation are supporting mechanisms for task scheduling.
Maheswaran et al. [8] combine such supporting mechanisms with
task scheduling together to define Resource Management System
(RMS). A taxonomy for RMS is developed in terms of its design
issues for Grid like systems with intent to view RMS
implementation impact for scalability and reliability of systems.
Design objectives are used to categorize environments into
compute-intensive, data-intensive, and service availability. A
requirement model for RMS is established with Quality of Service
(QoS) and data integrity as core requirements. QoS is defined for
scheduling requests in regards to the impact on already scheduled
tasks and an ability to guarantee expected level of service. Data
integrity refers the to security of underlying peers. This
requirement model is then used to develop a RMS taxonomy for
design issues such as peer organization, resource (peer and data)
models and scheduling characteristics. Since task scheduling is
done for available resources, effort is spent on identifying
considerations towards interaction with resources. The taxonomy
accounts for scheduler organization (centralized, hierarchical,
decentralized), methods for state estimation (predictive, non-
predictive) to enable scheduling decisions, rescheduling
approaches (periodic, event-driven) to cope with the dynamic
nature of resources, and nature of scheduling policy (dynamic and
static). Scheduling characteristics from this work, which are
relevant to enterprise P2P scheduling, are under column titled
‘Maheswaran’ in table 1. Since the taxonomy is focused on the
design of the scheduler it does not address characteristics of task
dependencies as it is considered an application specific
characteristic. Further, QoS does not include scheduling
overhead.

Figure 1. A Taxonomy of scheduling policies [9]

Braun et al. [7] provides a check list for the application and its
execution environment characteristics, which can influence
scheduling decisions. These characteristics are also used to extract
scheduling policy characteristics and enterprise P2P relevant
characteristics are in column titled ‘Braun’. Some of the major

 5

characteristics for application models include application size, its
type (degree of task dependency), communication patterns, data
availability, and QoS. For execution platform, characteristics
include the number of available machines at any given time,
number of network connections, machine architecture and degree
of processing parallelism. Since this taxonomy considers
application, platforms and scheduling, it is similar to scheduling
characteristics of enterprise P2P computing.

All of the above mentioned taxonomies consider some or all of
the enterprise P2P computing characteristics described in section
4, and therefore, can be applied when developing scheduling
policies for enterprise P2P computing environments. However,
the implementation of scheduling policies will vary from
environment to environment and general purpose implementations
will emerge overtime when existing limitations of enterprise P2P
computing are removed. Some of these limitations described by
Barkai et al. [10] include communication patterns and
mechanisms, resource naming and discovery, peer availability,
security and resource management. These limitations for now
tend to favor applications with relatively independent tasks,
requiring no or very limited communication, which can then be
replicated across environment to deal with unreliable nature of
peers.

6. EXISTING SCHEDULING POLICIES
In next three sub-sections existing scheduling policies are
presented. The original set of enterprise P2P scheduling
characteristics, presented in section four, is revised to exclude
qualitative characteristics of scheduling overhead, ease of
implementation and adaptability. Further, re-scheduling
approaches are merged into scheduling policy. This revision is
primarily done as it is hard to measure qualitative characteristics
during empirical study and secondarily for reasons to stay
succinct.

6.1 Grid
For Grid systems, a general purpose task scheduler is presented as
a core tool for such an environment by Casanova et al. [11].
Component modularity is used in order to separate application
implementation details from scheduling details. Applications
express their performance requirements and data/task scheduling
preferences for peers in order to benefit from this general purpose
scheduler. Given these application requirements, the scheduler
explores peers in the environment to determine the best possible
schedules. Minimum turnaround time (scheduling time +
application completion time) is used as criteria to decide on best
schedules. Inclusion of multiple suitable peers and exclusion of
peers that may not meet application specified requirements, are
used as mechanisms to deal with the unreliable nature of peers.
Search within a system for the best peers matching the application
task requirement is the core of this scheduler design. In order to
avoid exhaustive search across all peers in the system, various
search heuristics are used. Schedules are only calculated once and
the scheduler relies on other system implemented services
(supporting mechanisms) or on users to gather information
required to calculate optimal schedules. The scheduler’s
consideration to deal with the dynamic nature of peers makes it
promising for enterprise P2P computing. It can also be extended
to include failure rates as one of search heuristic while calculating
optimal schedules. Given the overhead associated with gathering

and comparing various schedules, applications with higher inter
task dependency become suitable candidate for this scheduling
approach.

Table 1. A map of enterprise P2P scheduling and existing
scheduling taxonomies characteristics

Charct’s. Casvant
&

Ekmecic

Maheswaran Braun

Organization Distributed,
Non-

distributed

Centralized,
Hierarchical,
Decentralized

Control &
Execution
Location

Policy Static,
Dynamic

Fixed (sys./
app. oriented),
Extensible (ad-
hoc, structured)

Static,
Dynamic

State
Estimation

Approximate,
Heuristic

Predictive,
Non-predictive

Feedback

Rescheduling Adaptive Periodic, Event-
Driven

Remapping

Task
Dependencies

Cooperative,
Non-

cooperative

- Depdencies,
Task

Duplication
Overhead Optimal, Sub-

optimal
- Execution

Times
Fault

Resilience
Dynamic

Reassignment
QoS (none,
soft, hard)

Fault
Tolerant,

Task
Duplication

Ease of Impl. - Resource
Model

Feedback

Adaptability - Resource
Discovery,

Dissemination

App. Model
supported

An interesting scheduling approach based on economic models is
presented by Buyya et al. [12] for P2P Grid computing
environment. It is assumed that in such environments end users
drive task scheduling requirements for resources (peers and data).
Users compete for these resources as these resource present value
to users. For example, reporting results from scientific study early
after aggregating more processors creates value of each
processors for user. Task scheduling can be performed to optimize
resource value to user, as opposed to typical some software or
hardware optimization criteria (utilization, failure rates,
efficiency). Since end user requirement driven resource
management is also present in real world business economics,
existing economic models are explored as one possible way to
address task scheduling or resource management in distributed
computing systems. Resources in such systems are viewed as
services with service owner who can associate service access
price for consumers. Therefore, access to these services per
scheduling request can be negotiated (implemented) using
economic models. Some of these models such as commodity
market, posted price, bargaining, tender, auction, bidding,
bartering, and monopoly/oligopoly are discussed for their
implementation requirements. Systems are viewed to be
composed of various supporting mechanisms, to facilitate service
(resource) access in terms of its monitory values (price). Some of
the examples for such supporting mechanisms include the Grid
Trader Server, Grid Market Directory, Resource Brokers, Grid
Info Service, and Grid Market Auctioneer. Further,

 6

communication protocols and access mechanisms are also
required as part of economic model implementations. In
enterprise P2P computing, resources are owned by a single entity
(i.e. enterprise) and therefore, the cost of resource consumption
and benefits gained by tasks will balance each other.
Foster et al. [13] developed task scheduling policies for data Grids
with the objective of reducing data access overhead, which is
associated with remote calls by scheduled tasks. When tasks are
scheduled at peers, which also host required data, significant
improvements in overall application execution are achieved.
Therefore, data Grid task scheduling policies are evaluated by
accounting for data replication policies. In this work
considerations are given to network bandwidth and latency,
autonomous and unreliable nature of resources and size of system
in terms of number of resources. There are two sets of scheduling
policies; one for task scheduling and one for data replication.
Together various combinations of these policies are studied to
realize their impact on overall application execution. The first set
includes JobRandom, JobLeastLoaded, JobRandLeastLoaded,
JobDataPresent, and JobLocal, where as second set includes
DataCaching, DataRandom, DataLeastLoaded, and
DataRandLeastLoaded policies. These simple yet powerful
policies appear promising for enterprise P2P computing for
applications with data-intensive tasks, due to their low cost of
implementation and decentralized nature. Implementation of these
policies requires an external scheduler for mapping decisions and
to deal with dynamic node nature.

6.2 Web-based Computing
In this section, systems with very large numbers (up-to millions)
of computing peers communicating over web are considered.
Mostly these systems have dedicated servers controlling the
overall application execution.
Task scheduling for applications with a large number of compute-
intensive large size tasks with high inter-task dependencies are
studied by Rosenberg et al. [14]. Tasks and their dependencies are
modeled as Directed Acyclic Graphs (DAGs) and in particular,
scheduling policies for three common families of computation
DAGs are developed. The primary goal of this work is to come up
with scheduling policies that reduce the possibilities of
computation deadlocks due to task dependencies on each other,
and as a secondary goal require minimum memory. A web-
oriented pebble game is used to model the execution of DAG
nodes, where pebbles are placed or removed from peers according
to dependencies described by DAG. These pebbles can then be of
'eligible' (eligible for scheduling) or 'executed' (finished
execution) type. In order to achieve the before mentioned goals,
the problem is to maximize the number of eligible pebbles at each
step during scheduling. Scheduling is considered to be done on
dedicated servers. For each DAG family, its structural properties
are examined to determine with functions that maximize the
number of eligible pebbles. This work focuses only on application
deadlock elimination due to task dependencies and does not
consider deadlock due to failure of task. Further, scheduling
polices are only computed once. This work however is an
important contribution towards scheduling highly inter-dependent
tasks that are compute-intensive and can be applied to enterprise
P2P computing if it can be extended further to consider
rescheduling due to task failure (unreliable environment).

Table 2. Enterprise P2P scheduling characteristics in existing
Grid scheduling policies

Charct’s. Casanova Buyya Foster

Organization Centralized Centralized
(clustered)

Decentralized

Policy Static Static Dynamic

State
Estimation

Predictive Predictive Non-
predictive

Task
Dependencies

Dependent
tasks on same

peer

Unclear Independent
tasks

Fault
Resilience

Duplication Contract Reactive

Mackie [15] describes a simple scheduling mechanism for a
scientific study, in which large number of computation task are
required to be executed in parallel. Like SETI@home, it relies on
slave peers to poll masters for work. Every slave peer runs a
scheduler task to determine when to poll master and when to
perform execution when received with work. Upon local user
interruptions, tasks are simply killed and execution is started
again from the beginning when a peer becomes idle. No
mechanisms to ensure application execution completions have
been described. Since, applications with large but independent
tasks are ideal for enterprise P2P computing, this type of
scheduling can be very well adapted to enterprise P2P
environments.
Foster et al. [16] presents a model to replicate data within
networked resources to provide high data availability. A model is
composed to determine the number of replicas necessary, and to
determine when and where to replicate data. The number of
replicas is determined by accounting for peer availability and
accuracy of network state information of existing replicas.
Periodic or request based approaches are used to trigger the
replication decision making process, where as a cost based
approach is used to determine where to replicate data. In an
enterprise P2P computing system, the available system state
information can be more accurate then in a large web-based
system with unknown peers. Therefore, this model can be
modified for state and replica information collection function to
become more suitable for enterprise P2P computing.
The first ever work in looking into computing using peers
available via the web is presented by Casanova et al. [17]. It
considers SETI@home like applications which can be scheduled
via a centralized scheduler onto heterogeneous peers (in terms of
processing power, network bandwidth, and availability). Two
simple algorithms for duplication and timeout are used. Either a
task is duplicated enough to ensure task completion and have
increase turnaround time at the cost of low throughput at the
computing peer, or the timeout is set to avoid excessive
duplication and waste of peer computing power. Simulations are
performed by setting up a system model for various real world
collected parameters and for various combinations of peer type
percentages. There are two types of peers: aggressive (high
availability) or conservative (low availability). It is found that on
one extreme when excessive input tasks are available only
timeout should be used to avoid low throughput, given quick
turnaround time is not a concern, in the other extreme for short set

 7

of input tasks, application duplication will provide better
turnaround times. In general, for applications between these two
extremes, turnaround time for the set of tasks should be use as a
performance measure as opposed to single task turnaround time or
peer throughput. Although, duplication and turn around based
scheduling policies are possible within enterprise P2P computing,
more sophisticated polices are attractive due to more state
information availability.

6.3 Domain Specific Heterogeneous
Distributed Computing
Scheduling policies described in this section are collected from
domain specific heterogeneous distributed computing
environments. These computing environments have custom
implementations with various assumptions and limitations. Any
scheduling work may not be directly applicable to enterprise P2P
computing without reworking the supporting mechanisms for such
policies. Nonetheless, these policies provide insight into issues
encountered and possible implementation approaches for
enterprise P2P computing.
A general purpose cost function is developed by Özgüner et al.
[18], which can be incorporated in scheduling policies to include
failure rate minimization as a criteria during scheduling decision
making. This cost function is also independent of the underlying
network topology and a static list heuristic based algorithm is
extended to incorporate this cost function. Cost functions only
considers network and hardware failure and do not address
failures due to resource unavailability. Without an extension of
this cost function (to consider unreliable nature of peers in
enterprise P2P environment), it will not be able to provide any
benefits since in enterprise, network and hardware failures can be
considered to be relatively rare.
A hybrid scheduling policy is presented by Siegel et al. [19]
which initializes with static algorithms and improves with
information becoming available at run time. After the initial static
schedule is computed, a two phase dynamic algorithm is applied.
The first phase groups tasks into blocks such that no two tasks in
same block depend on each other for data. These tasks are also
ranked at this time with some predetermined scheme. The second
phase has three variations and they all try to improve an initial
statically computed schedule. The first variant tries to minimize
tasks execution time of every block through remapping, the
second variant reorders tasks within blocks every remapping step
using task ranks and the third variant re-groups through a run-time
computed parameter. This work focuses on minimum execution
time for peers connected with high speed networks. Performance
comparisons with other scheduling policies are performed and in
some cases a 15% increase in performance is seen. These
algorithms are shown to have better resource utilization due to
overlapping of scheduling operations with task execution.
Simple dynamic algorithms are presented by Blake [20] for very
constrained distributed computing environment, which does not
take heterogeneity into consideration. Some of the environment
simplifications include no task communication, task know their
execution time, task migration consume equal processing time on
target and originating resources, and task migration delays are
independent of task size. Presented algorithms include No

Scheduling (NS), Random Scheduling (RS), Arrival Balanced
Scheduling (ABS), End Balanced Scheduling (EBS), and
Continual Balanced Scheduling (CBS).Simulation studies reveal
EBS to have better performance over CBS due to task migration
overhead associated with CBS.

Table 3. Enterprise P2P scheduling characteristics in existing
Web-based scheduling policies

Charct’s. Rosenbg Mackie Foster Casanova

Org’n Centld. Centld. Decentrald Centld.

Policy Static Dynamic Dynamic Dynamic

State Est. - - Non-
predictive

-

Task
Deped.

Deped.
graph

structure

Indeped.
tasks

Indeped.
tasks

Indeped.
tasks

Fault
Resilience

- Task
restart

Duplt Duplt/
timeout

Kebbal et al. [21] implement a programming tool to provide
means for parallel adaptive applications for heterogeneous
distributed computing. This tool also includes a scheduling
module, which is responsible for dynamically assigning
application(s) tasks to available peers. Scheduling policy is
responsible for partial or available DAGs mapping to peers in
network using 'ready task' maximization heuristic. Machine load
and task priority are used for mapping decision making.
Computing environment is viewed to be of limited bandwidth and
no local user autonomy is considered.
Atif et al. [22] develop a centralized dynamic algorithm, which is
a modification of the branch-and-bound algorithm. It has
considerably less complexity and performance is dramatically
improved over the branch-and-bound algorithm. This is mainly
due to the breaking of scheduling process into many phases,
where during each phase only partial schedules are calculated.
This algorithm also incorporates a cost model which then adapts
to degree of heterogeneity in the system. Network bandwidth for
communication overhead is given consideration, however,
resource unavailability and other failures are not a concern. The
developed algorithm is compared with other dynamic scheduling
policies and algorithm is shown to have significant improvements.
Iverson et al. [23] give consideration to multiple applications
(DAG in nature), which are competing for peers in single
heterogeneous distributed environment. A scheduling framework
is presented with algorithms for each component of framework.
There are three decisions to be made in this framework: how to a
make a scheduling decision, when to make a scheduling decision
and when to place a task into a local peer queue. Functions are
developed to capture the information required by these steps and
all of this work is done dynamically. Computing environment is
considered to be collection of heterogeneous resources spread
over network, possibly around the globe. Further, it is also
important to note that environment is not dedicated to one
application and more than one application is competing for
computing peers. The environment contains dedicated peers for
running schedulers and it is realized that developed algorithms are

 8

Table 4. Enterprise P2P scheduling characteristics in existing distributed computing scheduling policies

Charct’s. Özgüner Siegel Blake Kebbal Atif Iverson Jiang Radulescu

Org’n Centld. Centld. Centld. Centld. Centld. Centld. Centld. Centld.

Policy Static Hybrid Static/
Dynamic

Dynamic Dynamic Dynamic Dynamic Static/
Dynamic

State Est. Non-
predictive

- Predictive Predictive Predictive Predictive
(heuristic)

Predictive
(probabilistic)

Predictive

Task
Deped.

Indeped.
tasks

Indeped.
tasks

groups

Indeped.
tasks

Indeped.
tasks but

prioritized

Indeped.
tasks

Indeped.
competing

tasks

Increasing
order of

deadlines

Prioritized
Tasks

Fault
Resilience

Very
Limited

- - - - - Calculated
assurances

-

practical and their simulations validate assumptions made for
computing environment.

Jiang et al. [24] pay attention to scheduling issues in real-time
distributed computing systems. Three dynamic heuristic based
algorithms are presented; As Early As Possible (AEAP), As
Late As Possible (ALAP), and Reliability Cost Drive (RCD).
AEAP and AEAP do not take resource reliability into
consideration where as RCD considers peer failure. All three
algorithms also account for scheduling and dispatch time, which
his critical in real-time systems. It is assumed that all
applications have task execution times available in advance.
Heterogeneous system with resources connected with high
speed connections is viewed as execution platform with
dedicated resources to perform scheduling.

A static FCP (Fast Critical Path) and dynamic FLB (Fast Load
Balance) are presented by Radulescu et al. [25]. They try to
reduce time complexity of task selection (FCP), and processor
selection (FLB) policies. Both algorithms are modified to use
task execution minimization as opposed to task start time
minimization because former policy performs better in
heterogeneous distributed computing. Simulations are
performed for task sizes up-to 2000 and resources up-to 32.
There is no consideration to peer failure, communication failure.
FCP and FLB were compared with two other heterogeneous
computing specific algorithms and performance results were
acceptable in both cases. In case of irregular problems and high
variance of processor speeds FCP and FLB degrade
considerably.

7. SIMULATION
Enterprise P2P computing is relatively a new paradigm for
distributed computing and there is very small number of real
world deployments with mostly proprietary implementations.
Due to this reason there is no data available to indicate peer
availability models and application models. Without any real
world data and access to a enterprise P2P computing
environment, simulation is the only means of studying
scheduling policies for such environments. In addition,
simulators can also act as an incubator for various scheduling
policies and for related supporting mechanisms before policies
are applied to actual enterprise P2P computing environments.
For the purpose of this discussion a proof of concept simulation

is performed to validate the concept of enterprise P2P
computing and to realize some of the implementation
considerations for scheduling policies in such environments.

7.1 Scheduling Policies
Two scheduling policies of Random Assignment (RA) and
Minimum Completion Time (MCT) are implemented in this
simulation. RA is a static scheduling policy which randomly
maps applications tasks to available peers upon their arrival.
MCT is extension of RA, and after initial random mapping of
tasks, MCT uses peer completion time to re-map tasks to peer
with minimum completion time. Peer completion time is
measured in terms of outstanding tasks in peer’s local queue of
assigned tasks. For every outstanding task, MCT obtains a peer
with minimum completion time in the environment, and re-maps
current task in case when initially assigned peer has longer
completion time than newly obtained peer. Due to this ongoing
remapping MCT becomes dynamic.

7.2 Environment
A simple enterprise P2P computing environment is modeled for
this simulation, which has a centralized scheduler. Both
scheduling policies and their supporting mechanisms are
implemented on this centralized scheduler. RA and MCT both
require a mechanism to obtain peers in the available state,
whereas MCT also requires a mechanism to obtain a peer with
minimum completion time at any instance in time. Both of these
mechanisms are implemented by querying existing peers for
their state and completion times. When more than one peer is
possible the first peer in the result set is selected. Thus these two
supporting mechanisms also provide state estimation for
simulated environment. In addition on more explicit and
predictive state estimation mechanism is also available to obtain
the task execution status at any time. Tasks during their
execution are simply terminated when the executing peer switch
their state to unavailable and are restarted from the beginning
when a peer becomes available. Given this heuristic no other
fault tolerant mechanisms are present in the simulated
environment. The peers generally tend to remain present in the
environment and therefore, eventually all of the assigned tasks
will be executed by assigned peers whenever peers are in
available state. As an extension to the simulation model, task
states can be retained to either continue task execution when
peers go into available state, or to map task onto another

 9

available peer. Rescheduling in this environment is only
performed by MCT, which during its course of execution
remaps tasks to peers with lower completion times. All of the
application tasks are considered to be independent and non-co-
operative and therefore all of the tasks can execute in parallel.
However, in scenarios where tasks depend on each other for
execution, some policies can be employed onto sub sets of tasks
in which all of the tasks are independent of each other. Further,
each of the tasks has same execution time which is known
before hand. However, execution times are not used during
scheduling decisions. Each of the peers is only capable of
executing one task at a time and no peer level parallelization is
modeled. The scheduling overhead for both RA and MCT is
calculated in terms for elapsed time for scheduling policy
completion. Other considerations for scheduling overhead can
include communication overhead of scheduler and peers and
CPU consumed towards executing a scheduling policy. Both of
algorithms are relatively easy to implement and do not attempt
to adapt to type and size of underlying applications.

7.3 Results
There are three variables selected for the simulation including
peer set {p1, p2, p3,…, pn} (size of n=10, 20, 30, 40, and 50),
task set {t1, t2, t3, …, tj} (size of j=50, 500), and task length
(t=60, 3000, 6000, 9000). The peer availability ceiling is set to
twice as much as the task length and a random value is
generated between 0 and availability ceiling for every peer at
iteration of state change time. Two metrics of completion time
and scheduling overhead are computed in terms of elapsed time
units for combination of above mentioned variables. Some of
the selected results are shown in figures 2, 3, 4, and 5. Since the
primary intention of simulation is to realize enterprise P2P
computing validity, a critique comparison between RA and
MCT is not performed. MCT naturally by its description and
collected results outperforms RA in every case, however MCT
has a high scheduling overhead in every single case. Figure 2
and 3 are for a high load scenario with large number of tasks
with longer execution times. In this case as the number of peers
increase scheduling overhead of both RA and MCT tend to
merge together, as more peers are available to MCT for load
balancing and early completion of all tasks and hence MCT
termination. Since, MCT runs as long as any tasks are
outstanding, therefore, completion time and scheduling
overhead in terms of elapsed time units for MCT are the same.
Figure 4, and 5 present a scenario of small task set size with
long execution time. In this case for large peer set sizes, RA
completion times get close to MCT. Given the overhead
attached with MCT, RA may become policy of choice for such
scenarios.

From this simulation, enterprise P2P computing appears to be a
valid heterogeneous distributed computing paradigm, which can
increase enterprise resource utilization and provide alternative
to expensive non-distributed solutions.

1

10

100

1000

10000

100000

1000000

10000000

10 20 30 40 50
Peers

El
ap

se
d

Ti
m

e
U

ni
ts

RA MCT

Figure 2. Completion time for 500 tasks of task length 9000

1

10

100

1000

10000

10 20 30 40 50
Peers

El
ap

se
d

Ti
m

e
U

ni
ts

RA MCT

Figure 3. Scheduling overhead for 500 tasks of task length

9000

1

10

100

1000

10000

100000

1000000

10 20 30 40 50

Peers

El
ap

se
d

Ti
m

e
U

ni
ts

RA MCT

Figure 4. Completion time for 50 tasks of task length 6000

1

10

100

1000

10 20 30 40 50

Peers

El
ap

se
d

Ti
m

e
U

ni
ts

RA MCT

Figure 5. Scheduling overhead for 50 tasks of task length

6000

 10

8. SUMMARY & FUTURE WORK
In this paper, enterprise P2P computing is introduced by
identifying characteristics of its environment and suitable
applications to study application task scheduling policies in such
environments. Due to absence of task scheduling work and
enterprise P2P computing similarities with other heterogeneous
distributed computing paradigms, various scheduling
taxonomies and policies from these paradigms are surveyed to
identify their relevance for enterprise P2P computing. In
addition, a proof of concept simulation is also performed to
validate enterprise P2P computing concept. In a future more
detailed simulation work is planned to study and develop
sophisticated scheduling policies for enterprise P2P computing.
Real world peer availability models and application models can
be collected for purpose of this simulation with rather less
restricted enterprise P2P computing environment.

9. REFERENCES
[1] Milojicic, D. S., Kalogeraki, V., Lukose, R., Nagaraja, K.,

Pruyne, J., Richard, B., Rollins, S., Xu, Z., Peer-to-Peer
Computing. http://www.hpl.hp.com/techreports/2002/HPL-
2002-57.pdf

[2] Moozakis, C., PCs As Supercomputer,
http://www.internetweek.com/newslead01/lead052901.htm

[3] Foster, I., Kesselman, C., Tuecke, S. The Anatomy of the
Grid: Enabling scalable virtual organizations. International
J. Supercomputer Applications, 15(3), 2001.

[4] Milenkovic, M., Robinson, S. H., Knauerhase, R. C.,
Barkai, D., Garg, S., Tewari, V., Anderson, T. A.,
Bowman, M., Inter. Toward Internet Distributed
Computing. Computer. Vol. 36(5), May 2003, pp. 38-46.

[5] Maheswaran, M., Braun, T. D., Siegel, H. J. Heterogeneous
Distributed Computing. Encyclopedia of Electrical and
Electronics Engineering, Vol. 8. J. G. Webster, ed., John
Wiley, New York, NY, 1999, pp. 679-690

[6] Ekmecic, I., Tartalja, I., Milutinovic, V. A Survey of
Heterogeneous Computing: Concepts and Systems.
Proceeding of the IEEE, 84(8):1127-1144, Aug. 1996

[7] Braun, T. D., Siegel, H. J., Beck, N., Boloni, L.,
Maheswaran, M., Rerther, A. I., Robertson, J. P., Theys,
M. D., Yao, B. A Taxonomy for Describing Matching and
Scheduling Heuristics for Mixed-Machine Heterogeneous
Computing Systems. Symposium on Reliable Distributed
Systems. 1998: 330-335

[8] Krauter, K., Buyya, R., Maheswaran, M. A Taxonomy and
Survey of Grid Resource Management Systems. Software
Practices Experience 32(2): 135-164, 2002

[9] Casvant, T. L., Kuhl, J. G., A Taxonomy of Scheduling in
General-Purpose Distributed Computing Systems. IEEE
Transactions of Software Engineering, 14:141-154, 1988

[10] Barkai, D. Technologies for Sharing and Collaborating on
the Net. First International Conference on Peer-to-Peer
Computing, August 27 -29, 2001

[11] Dail, H., Casanova, H., Berman, F. A Modular Scheduling
Approach for Grid Application Development

Environments. Submitted to Journal of Parallel and
Distributed Computing, April 8, 2002

[12] Buyya, R., Abramson, D., Giddy J., Stockinger, H.
Economic models for resources management and
scheduling n Grid computing. Concurrency and
Computation: Practice and Experience 14(13-15): (2002)

[13] Ranganathan, K., Foster, I. Simulation Studies of
Computation and Data Scheduling Algorithms for Data
Grids. Journal of Grid Computing, V1(1) 2003

[14] Rosenberg, A., L., Yurkewych, M. Optimal Scheduling for
Some Common Computation-Dags on the Internet.
University of Massachusetts at Amherst, October 3, 2003

[15] Mackie, D., M. Simple and Effective Distributed
Computing with a Scheduling Service. Army Research
Laboratory, Adelphi, MD

[16] Ranganathan, K., Iamnitchi, A., Foster, I. Improving Data
Availability through Dynamic Model-Driven Replication
through Peer-to-Peer Communities. Global and Peer-to-
Peer Computing on Large Scale Distributed Systems
Workshop, Berlin, Germany, May 2002

[17] Kondo, D., Wing, E., Casanova, H., Berman, F. Models
and Scheduling Mechanisms for Global Computing
Applications. International Parallel and Distributed
Processing Symposium, April 15-19, 2002

[18] Dogan, A., Özgüner, F. Matching and Scheduling
Algorithms for Minimizing Execution Time and Failure
Probability of Applications in Heterogeneous Computing.
IEEE Trans. on Parallel and Dist. Systems 13(3): 308-323
(2002)

[19] Maheswaran, M., Ali, S., Siegel, H., J., Hensgen, D.,
Freund, R., F. A Dynamic Matching and Scheduling of a
Class of Independent Tasks onto Heterogeneous
Computing Systems. Proceeding of the 8th Heterogeneous
Computing Workshop, April 1999

[20] Blake, B., A. Assignment of Independent Tasks to
Minimize Completion Time. Software-Practices and
Experience, Vol. 22(9), 723-734, September 1992

[21] Kebbal, D., Talbi, E., G., Geib, J., M. Building and
Scheduling Parallel Adaptive Applications in
Heterogeneous Environments. 1st IEEE Computer Society
International Workshop on Cluster Computing, December
02-03, 1999

[22] Hamidzadeh, B., Lilja, D., J., Atif, Y. Dynamic Scheduling
Techniques for Heterogeneous Computing Systems.
Concurrency: Practice & Experiences, October 1995

[23] Iverson, M., A., Özgüner, F. Dynamic, Competitive
Scheduling of Multiple DAGs in a Distributed
Heterogeneous Environment. Heterogeneous Computing
Workshop 1998: 70-78

[24] Qin, X., Jiang, H. Dynamic, Reliability-Driven Scheduling
of Parallel Real-Time Jobs in Heterogeneous Systems,
International Conference on Parallel Processing. September
03-07, 2001

[25] Radulescu, A., Gemund, Arjan J., C., van. Fast and
Effective Task Scheduling in Heterogeneous Systems.
Heterogeneous Computing Workshop 2000: 229-23

