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ABSTRACT 

This paper presents a brief review of early learner modelling in Intelligent Tutoring Systems focusing particularly on procedural knowledge 

representations vs. declarative knowledge representations. It then tracks the paradigm shift from traditional learner modelling, which 

emphasises knowledge representation, to distributed learner modelling, which focuses on the modelling process. Learner models in 

distributed, multi-agent environments are created by different agents for different purposes, are often fragmented and local, and only make 

sense in the specific context of creation. My work, in particular, is aimed at defining a taxonomy of purposes and retrieving information 

relevant to a particular purpose “just-in-time” in order to assemble and integrate fragmented learner model information about a learner. 

Examples of my approach will be drawn from the I-Help system. Some open issues in this approach are also given in this paper, which 

motivate my further investigation and exploration.   

Keywords 

Learner modelling, purposes, I-Help, agent, procedural model, declarative model, centralized and decentralised learner models 

1. INTRODUCTION 

Intelligent Tutoring Systems (ITSs) are computer-based instructional systems that are aware of the knowledge of the domain, as well as 

what the learner knows. In the context of ITS, a learner model is a representation of the computer system’s beliefs about the learner and is, 

therefore, an abstract representation of the learner in the system.  Learner modelling is a common task that is performed in almost every 

ITS for several reasons. 

• First, learner modelling motivates the creation of systems that are adaptive to each learner’s interests, preferences and 

background knowledge in order to provide personalized instruction to a particular learner. Learner modelling is the means by 

which the ITS could individually adapt the learning experience to suit the learner’s perceived needs. [47] 



• Second, learner modelling also enables location of suitable collaborators for the learner, as well as facilitating collaboration and 

co-operation between learners by taking into account the users’ goals, plans and knowledge about domains. 

• Finally, by making the contents of learner models accessible to students, learner modelling can be used to promote learner 

reflection and therefore to contribute directly to learning [5]. 

VanLehn [50] also outlined several functions that learner model most commonly perform in ITS. They are advancement, offering 

unsolicited advice, generating problems and adapting explanations. In general, learner modelling is important within ITS and has been a 

key research area for many years. 

Traditional ITS focused on a single global description of a learner. However, software systems currently are shifting to distributed and 

agent-based.  In this kind of environment, the traditional single, complex learner model is replaced by learner model fragments, developed 

by the various software agents populating the environment for particular purposes [53, 54][34].  These fragments come from a range of 

sources (e.g. raw data, other agents) and are partial, dependent on the context in which they were created, and distributed.  The task of 

learner modelling, therefore, is shifting from the collection at one place of as many data about a learner as possible to collecting on demand 

whatever learner information is available at this moment and interpreting it for a particular purpose. Thus, the main focus of learner 

modelling shifts from traditional representation issues such as consistency maintenance to issues such as determining what knowledge to 

retrieve for a given purpose, making sense of this knowledge in context, etc. Learner modelling in this kind of system is a “just in time” 

[26] process, invoked as a part of achieving a particular purpose and using information relevant to that purpose [6]. My work, in particular, 

is aimed at defining a taxonomy of purposes and retrieving learner information relevant to a particular purpose just-in-time in order to 

assemble and integrate fragmented learner model information. The aim of this paper is to review early work on learner modelling, which 

mainly focuses on knowledge representation, and to introduce my purpose-based distributed approach to multi-agent learner modelling. 

The reminder of this paper is organized as follows. A brief review of the most important learner modelling techniques is given in Section 

2.  Section 2 also overviews the distributed approach to learner modelling and compares it with centralized approaches. Section 3 explains 

why I am concerned with the purposes of learner modelling and gives the structure of purposes. Conclusions are drawn in Section 4, where 

I also outline my planned future work. 

2. LEARNER MODELING 

Learner Modelling (LM), as a field of study, has resulted in significant amounts of theoretical work, as well as practical experience.  

Learner modelling can be defined as the process of gathering and maintaining relevant information in regarding the knowledge state of a 

learner. Knowledge representation is the key issue in traditional learner modelling. In this section, I examine the past accomplishments in 

learner modelling, focusing on how the knowledge is represented. 



2.1 Procedural Model vs. Declarative Model 

Most Intelligent Tutoring Systems (ITSs) represent domain knowledge as a procedural model or a declarative model. Procedural models 

represent domain knowledge by a network of procedures, sub-procedures, etc., down to a set of primitive actions. In this kind of model, the 

main knowledge to be communicated is procedural, i.e. knowledge about how to perform a task.  The aim is to achieve a level of 

description, which enables learner performance to be associated with individual components of the procedural network directly. In this 

case, the components are not independent, that is, one cannot simply delete any components [14]. This kind of model has strong diagnostic 

capabilities. The most famous system based on this model is the BUGGY system [4]. 

Declarative models represent knowledge in the form of a set of facts and rules organized so that the machine can reason with them while 

the set of knowledge is inspectable by the user. Declarative representations are easier to be directly maintained by the user by adding and 

deleting facts and rules. Usually the organisation of declarative learner models is according to instructional goals, and the information 

stored pertains to the learner’s mastery of these goals. Since what is stored is the learner’s mastery, these models store evaluations of the 

learner’s knowledge by using symbolic or numeric value [43]. This model records features in a descriptive way, which means it contains 

description or evaluation of the knowledge instead of the knowledge itself. In the following section, several systems will be reviewed 

based on these two dimensions. 

2.2 Review of Procedural Models 

In a procedural model, the system compares the learner’s answer with an intermediate result of an action that an expert performs in order to 

create and update the learner model about the domain knowledge [52]. Most systems apply a rule-based approach to induce a procedural 

model. 

2.2.1 Bug Models 

To account for learners’ misconceptions in simple procedural skills, Brown and Burton proposed “the BUGGY model” [7]. The goal of the 

BUGGY program is to build a diagnostic model of the learner: a model of internalized incorrect instructions or rules. In this model, the 

learner’s errors are seen as symptoms of a “bug”. A collection of likely errors and misconceptions for a given domain are collected 

manually from empirical studies of learners in the domain. 

BUGGY can help arithmetic teachers recognise learner bugs. BUGGY selects a problem related to a given bug, then asks the teacher to 

solve it using this incorrect procedure. The DEBUGGY program reads a learner’s test answers and proposes the bug or bugs that most 

likely caused the learner’s errors. IDEBUGGY is an interactive version of DEBBUGGY that adds the capability of dynamically generating 

problems to help identify learner bugs [24]. In the BUGGY model, the observed data is represented using a network of procedures or sub-

procedures (methods and their variants), to simulate the behaviour of a learner. This network represents some possible ways that a learner 



could attempt to solve subtraction problems. When a learner’s problem is presented to DEBUGGY or IDEBUGGY, various combinations 

of good and buggy methods are tried to find a complete procedure that most closely matches the performance of the learner [24].  In this 

process, unlike BUGGY, DEBBUGY does not calculate the answers of co-occurring bugs in advance. Rather it uses a generate-and-test 

method to produce a set of diagnoses, find the answers that predict and test those answers against the learner’s answers, and keep the best 

matching ones.  DEBBUGY and BUGGY can be used as off-line diagnostic systems because they work with a predefined test with 

subtraction problems and the learner’s answers as input. IDEBUGGY, on the other hand, performs an interactive diagnosis, where the 

system can choose a problem whose answer will help diagnosis the most. 

The BUGGY system provides a detailed model of the subtraction process. However, although the model can be used to reproduce learner 

mistakes, it does not explain why the learner has made those mistakes. Thus, BUGGY does not provide a deep model of the knowledge 

involved in the learner subtraction processes, so it is not clear which knowledge the learner is missing.  Moreover, the expert knowledge of 

the system is a black box; it cannot be used to justify or explain the reasoning of the expert or the learner and therefore cannot be used to 

generate explanations to teach the learner. Also, all knowledge in this system is pre-defined. The new bugs will be added to the system 

when they are discovered. The system has no ability to augment the knowledge directly from the interaction. Finally, the effectiveness of 

this modeling is limited by the completeness and preciseness of the collection of bugs. This is a very important limitation because the 

process of acquiring such a collection is time consuming and laborious [55]. 

2.2.2 Machine Learning Approaches 

In the BUGGY system, the static nature of bug libraries makes it impossible to model unanticipated learner behaviours. To capture novel 

learner misconceptions, machine learning techniques have been studied. Many applications of machine learning techniques to the 

construction of procedural models have been tried, some of which focus on extending a bug library [48] and some attempt to infer a learner 

model by using instance induction technique [31].  

2.2.2.1 PIXIE 

PIXIE [48] selects one model that produces the learner’s behaviour from a set of offline-generated correct and buggy models, then 

recognises and interprets learner behaviour. PIXIE systematically searches the space of possible models, using an incremental method to 

build the learner model that effectively limits the size of the search space. At each stage, the potential models are limited to models 

generated from the existing model by adding either a correct or buggy rule for the skill being tested, or perhaps a mal-rule corresponding to 

an earlier skill. The system also attempts to generate new mal-rules when the learner exhibits a problem that cannot be modelled using the 

mal-rules already in the bug library. The search space is constrained by a set of domain-dependent heuristics. 

There are some disadvantages of this approach. First, there is no general-purpose filtering mechanism to be used to cut down the number of 

new mal-rules presented to the learner. Learners have to decide which new mal-rules are appropriate extensions for the bug library. 



Second, although the model can explain the behaviour of a learner, it gives no indications as to why learners have this particular set of mal-

rules, or why learners in general make some types of mistakes but not others [24].  

2.2.2.2 ACM 

In order to avoid the cost associated with hand-constructed bug libraries, Langley et al. [31] tried to use machine learning techniques to 

diagnose misconceptions by applying condition (or instance) induction. ACM (Augmented Cognitive Modeller system) is a kind of 

reconstructive model in which domain knowledge can be decomposed into the set of primitive operators and the set of conditions for their 

applicability. The assumption underlying this model is that learners never err when performing the operators, but they sometimes apply 

operators to wrong situations. This assumption is less constraining than a pre-specified library of bugs. 

ACM consists of three phases. In the first one, the problem space is established; in the second (off-line) phase, a solution path is found. 

This solution path is used to explain the learner’s observed behaviour.  There are three inputs to this phase: problem space, the definition 

and solution of the problem, and the learner’s answer. The solution path is searched by using a set of primitive operators constrained by 

‘psychological heuristics’ rules instead of exhaustive search. In the last phase, machine learning techniques are used to induce the 

procedure that is capable of generating the path identified in the previous phase. The output of induction is a set of conditions, which 

predict when an operator will produce a state. The state lies on the solution path connecting the input for a given problem to the learner’s 

solution. The conditions found by induction are then used to specialize the operators, and the result is a procedure that models the learner’s 

unique problem solving behaviour. 

By using induction, ACM can construct models that capture both correct and buggy knowledge. However, because the complete procedure 

that models the learner’s behaviour is induced from the final answers, the operators must be enough to model many kinds of behaviour, 

both correct and incorrect, the potential search space is very large although some “psychological heuristics” have been used to limit the 

search. The only remedy to this is collecting large amounts of data on each learner or imposing further constraints on the search space. But 

this remedy requires finding such constraints by using the very human-intensive methods [2].    

2.2.2.3 INSTRUCT 

To deal with the computational complexity in ACM, another approach based on machine learning techniques is proposed: INSTRUCT 

(37) (Interactive Student modelling using techniques of procedure indUCtion from Traces). INSTRUCT tries to induce models of 

procedural skill by observing learners’ performance and collecting information both implicitly and explicitly. Two well-known techniques 

are employed in this approach: reconstructive modelling and model tracing, at the same time avoiding their major problems. 

The main cause of complexity of reconstructive approaches (for example, ACM) is that the model is inferred from small amount of 

information. This results in huge search spaces and is time-consuming.  INSTRUCT exploits the techniques of machine learning for 

procedure induction from traces. This approach uses incremental, on-line techniques to trace the procedure’s execution performed by the 



learners. In such a case, a learner’s solution path is induced by following the learner step by step in a manner is similar to model tracing. 

This technique not only traces all or some of the actions performed by the learner, but also includes sequencing information. However, 

although model tracing can be very successful for inexperienced learners, knowledgeable learners can be very frustrated if they only can 

perform one primitive operation at a time. By realising this, INSTRUCT induces macro-operators to allow learners to combine several 

operators in a larger chunk and to perform them at once. 

The on-line and incremental features make INSTRUCT more effective and adaptive because immediate feedback on learner actions can be 

used to tailor the interaction between system and learner.  Also the macro-operators allow the system to follow the learner more naturally. 

It does not rely on bug libraries and enables the learner to solve the problems using more complex steps. However, INSTRUCT needs to 

match the learner’s actions to those proposed by the domain expert, so it needs an expert module. It is clear that building a domain expert 

is time-consuming.  

In summary, procedural representation cannot explain why this procedure is generated; therefore it is difficult to provide appropriate 

feedback to the learner. Also, the pre-defined procedural (bug) library increases the overhead of the system and the library construction is 

time-consuming and expensive. It is impossible to have internal propagation in procedural models since it is hard to find relation between 

each set of procedures in the system. 

2.3 Review of Declarative Models 

Both the weaknesses and strengths of procedural knowledge representations are derived from the fact that they are use-specific [1]. In 

some cases, a more generalized declarative knowledge representation may be desired.  The declarative model is a representation of what 

the system knows and is usually contrasted with knowing how to use facts. Declarative models are sometimes probabilistic, and can be 

represented using Bayesian Belief Networks, which allow to propagate new evidences and to update the knowledge.  Several techniques 

can be used to construct this model: using stereotypes and combinations of stereotype [45] [25], fuzzy logic, semantic network, etc. 

2.3.1 SCHOLAR 

The earliest example of a declarative learner model is used in SCHOLAR [8], the first ITS, whose goal was to communicate information, 

in this case about South American geography. This system adopts a domain representation, a semantic network, which we can regard as 

“declarative”. In the semantic network, the nodes represents various concepts, such as countries and products, linked by various 

relationships, such as part-whole or generalization hierarchy. The links allow certain fundamental inference processes on the network.  For 

instance, the system can conclude that Santiago is in South America because Santiago is in Chile and Chile is in South America. 

Carbonell pointed out that the semantic net representation of the knowledge base used in this project was close to the internal knowledge 

structure of human, and he believed that the learner model might be built by annotating nodes and links in the network. 



2.3.2 GRUNDY: Stereotype-based User Modelling System 

A frequently employed user modelling method is the so-called “stereotype approach” [44][45].  Stereotypes contain typical characteristics 

of user groups in the application domain of the system. They enable the system to make a large number of plausible assumptions on the 

basis of a substantially smaller number of observations. If certain preconditions are met, a stereotype can be activated for a specific user, 

which means that the assumptions contained in the stereotype become assigned to the user. These assumptions can be overridden by 

specific observations. The resulting collection of assumptions forms the individual user model. 

A stereotype-based system is GRUNDY, which is a system recommending novels to people to read.  The stereotypical profile in Grundy 

contains information about different facets, such as motivations, interests, etc. and their corresponding values and ratings. The stereotypes 

are arranged in a directed acyclic graph, formed by partial order generalization hierarchy. That means, for example, that the class of people 

described by SPORTS-PERSON is a subclass of the class of people described by ANY-PERSON. To determine which stereotypes are 

applicable to a particular user, GRUNDY asks the user for a self- description at the start of a session. Individual phrases (for example, 

athletic or sports man) would trigger stereotypes that are likely to apply to that user. 

Stereotypes are valuable tools in domains where user classification is possible and relevant and is a reasonable approach for judging the 

user’s personality traits. However, for judging the user’s level of expertise, this approach is inaccurate, since the user’s knowledge in the 

intermediate levels may be different from the system’s concept or from other users’ knowledge. Also, this technique requires considerable 

user effort and this increases the overhead of using the system.  

2.3.3 Bayesian Belief Networks (BBNs) 

Declarative models can represent knowledge using both symbolic value and numerical techniques. In SCHOLAR and GRUNDY, for 

example, symbolic techniques were used. However, intelligent systems often need the ability to make decisions under uncertainty using 

the available evidence. In order to capture the uncertainty inherent in modelling users, numerical techniques have been applied in last few 

years: such as Bayesian Belief Networks (BBNs), fuzzy logic (FL), Dempster-Shafer theory of evidence  (DST) or neural networks. 

A Bayesian Belief Network (BBN) is a directed, acyclical graph in which the nodes correspond to variables and links correspond to 

probabilistic influence relationships. They provide a mathematically correct and semantically sound model for representing uncertainty 

that provides a means to show probabilistic relationships between random variables. The networks are constructed based on the observable 

events and goals within each phase of the model. The propagation of changes in probability values is possible on receipt of evidence [46]. 

The casual organisation in BBNs facilitates the analysis of action sequences, observations, consequences, and expected utility [39]. 

Therefore, BBNs have a great versatility and power, and they are now the most common representation scheme for probabilistic 

knowledge. They have been used for modelling learners’ knowledge by representing relationships among concepts. 



Jameson [23] classified systems according to how BBNs have been used. Several systems mainly use the diagnostic inference capabilities 

of BBNs. Among them, some systems emphases on interpreting evidence about user’s knowledge of concepts, such as IPSOMETER [20], 

OLAE [33], POLA [11], HYDRIVE [36]; some of them are designed to recognise the plans of an agent, such as [42], [20], WIMP3 [9].  

Other systems combine diagnostic inference and prediction inference together by using both upward and downward propagation. For 

example, EPI-UMOD [12], POKS [13] are used to infer that user knows a concept given the fact that he/she knows certain other concepts; 

PRACMA [22], Ppp [51], VISTA- � [19] predicting the user’s cognition and behaviour form a basis for the system’s decisions and 

actions.  

Therefore, BBNs can be applied to user/learner modelling in many different ways. However the nodes in BBNs have to be initialised with 

some prior belief. This is problematic, because, for example, there may be no way to obtain meaningful prior knowledge when the system 

is being deployed for the first time. In this case, BBNs often assign equal prior probabilities to all hypotheses and this is not practical 

because it cannot distinguish between a state of ignorance and a genuine belief about a variable. Assigning the conditional probabilities to 

a BBN requires a large knowledge engineering effort. Moreover, the inference techniques in BBNs are NP-hard, so the computation is 

more complex.   

2.3.4 Fuzzy Logic-based 

In order to deal with uncertainty management in user/learner modelling, fuzzy logic (FL) is used based on two quite different consideration 

[23]: 

First, people often reason in terms of vague concepts when dealing with the imprecision, or vagueness, which is typical of natural 

uncertainty. Fuzzy logic techniques can be used to mimic this human style of reasoning by representing and reasoning with vague 

concepts. 

Second, users may express explicit information about themselves vaguely when they supply this information to a system. For example, a 

user says: “I don’t know too much about HTML”. The reason for that perhaps is because he/she does not have enough knowledge about 

HTML, or perhaps because he/she is not willing to express his/her knowledge precisely. In this way, the user’s vagueness leads to 

uncertainty in the system representation.  The functions of FL techniques are well suited to the representation of such input. They can form 

useful parts of a solution and allow such uncertainty to be represented and processed even when other uncertainty management techniques 

are used as well. 

There are a lot of systems which use FL to model vagueness. For example, KNOME [10] – substituting Fuzzy Rules for the laws of 

probability; the sales assistant [41] – maximal use of minimal user input; GEORGETTE [30] – fuzzy rules for user simulation; SYPROS 

[18] – student modelling with fuzzy expert system; IFTRED [17] – replacing fuzzy rules with linear equations; SHERLOCK� [27] – 

investigating the utility of alternative propagation techniques. 



Fuzzy logic techniques are relatively easy for designers and users to understand since users often use vague terms than precise probability 

values to supply information to the system. FL also can be combined with other numerical techniques to deal with the user’s input 

efficiently. 

In summary, declarative models offer a clear, modular representation, which is transparent to humans and an ability to propagate the 

necessary modifications throughout a user model whenever any change is made.  

2.4 Generic User/Learner Modelling Systems 

Generic user/learner modelling systems motivate to provide user/learner modelling functionality as shells or server products. The 

user/learner modelling shell systems forming part of the application offer reusability and modifiability of user/learner models. Major shell 

systems developed during last ten years include UMT [3], BGP-MS [28][40], TAGUS [38], etc. According to Kobsa [29], a user/learner 

modelling shell system should be expected to provide as many services as possible; to be able to express as many types of assumptions 

about users as possible at the same time; and to have strong inferential capabilities.  The user/learner modelling server systems are 

centralized software components that offer their services to several applications in parallel [15]. Compared to embedded user modelling 

components, user/learner modelling servers seem to provide promising advantages: information is maintained and processed in a central or 

virtually integrated repository; user/learner information acquired by one application can be employed by other applications; it is more 

convenient to update user/learner modelling information and relieve clients from user/learner modelling tasks, etc.  

2.5 Decentralised Learner Modelling Approach 

Decentralised learner modelling consisting of a multitude of learner models developed and kept by a variety of software agents in the 

context of multi-agent environments was described by Vassileva et al. [53]. This evolved into a new approach called  “Active” learner 

modelling [34], which was proposed as a distributed alternative to server-based approaches. It emphasises the activity and context of 

modelling, rather than on the global description. The model is regarded as a function used to compute relevant information about one or 

more learners, depending on the purpose of adaptation and the context in which the need of modelling arises. In this sense, “model” is a 

verb rather than a noun.  This approach is targeted at a distributed, multi-agent based software environment in which learners form a 

learning community. Therefore in this kind of environment, there is no single monolithic learner model associated with each learner. 

Rather the learner models are fragmented and distributed throughout the system.  Decentralised learner modelling focuses on the modelling 

processes, such as retrieval, integration, and interpretation of the fragmented models, rather than traditional knowledge representation. This 

approach is the opposite of the centralized user modeling approach discussed in section 2.4 

The centralized approach allows for the integration of existing information sources about users/learners and enables access to information 

stored in user/learner models. The pre-constructed user/learner models are stored in centralized or virtual centralized repository. This is 



contrast with decentralised (distributed) approach, in which user/learner models can be stored anywhere – in a centralized or distributed 

database, or in files. Even though they may be physically stored in a centralized database (e.g. in I-Help, where all the models are stored in 

a ORACLE database), the user data is virtually distributed since only the agents who created the model knows how to access it. While the 

centralized approach aims to collect as many data about user/learner as possible, the decentralised approach focuses on the process of 

collecting and integrating information about the user/learner at particular times and with specific purposes. The former must includes 

additional backup mechanisms in case of breakdown and security mechanism to guarantee the privacy of the expertise data; however, the 

latter does not concern these too much since there is no central model to be protected. 

The authors argue [34] that in mobile, distributed, multi-agent software system, the decentralised approach could be a more suitable 

solution for user/learner modelling. To demonstrate this, the decentralised approach needs to be put on a more formal basis, which allows 

seeing its generality.  The goal of my work is to create a generic representation of purposes for learner modelling. This representation will 

be procedural.  A library of purposes for learner modelling will be created, which will look somewhat like the procedure libraries in 

BUGGY. The purposes will be organized on different levels of generality and will be associated with routines for retrieval, integration and 

usage of the learner modelling data. These procedures will be retrieved and executed by distributed components (agents), as they are 

needed to compute user models just in time for the purpose at hand. In the next section I will describe in more detail the approach that will 

be used to create such purpose-libraries for distributed learner modelling – I will call it “purpose-based learner modelling”. Purpose-based 

learner modelling is decentralised (distributed) and active, i.e. it emphasises the process of modelling and the context in which modelling is 

happening. 

3. PURPOSE-BASED LEARNER MODELLING 

Purpose-based learner modelling mainly focuses on modelling processes, such as retrieval, integration, and interpretation. Purpose-based 

means that the distributed and fragmented models can be computed just-in-time [26], for a particular purpose, using only the data required 

for that purpose. There are two advantages in this approach. First, focusing on purposes can speed computation dramatically. Because 

agents in system only maintain distributed partial models, a full integration of the information would be expensive, and sometimes would 

be impossible. However, it would be possible to integrate specific data, which is relevant to a specific purpose. Second, retrieval and 

integration of information at a moment of time, for a particular purpose would take into account the local context and can be linked 

directly to the adaptation needed; that is the model only makes sense in the context in which it is created, such as time, purpose, the agent 

who created it, the available sources, etc. Purpose-based learner modelling will be explained using examples from the I-Help system  [16].  

3.1 Domain – The I-Help System 

I-Help [16] is a distributed multi-agent system that allows users to request, receive and give peer help synchronously and asynchronously. 

There are two I-Help components: private one-to-one peer help and public discussion forums. The former provides peer help and expert 



advice and assists open-ended interactions between two individuals, such as tutoring. The latter allows learners to ask and answer 

questions on a variety of topics, which is more suitable for discussion involving multiple problem solutions and many people. These two 

components are useful for providing help outside normal class time and suitable for different types of interactions. Learner modelling in 

this environment can serve several purposes: e.g. selection of a suitable helper for match making purposes; evaluation of the learners by 

the teachers; self-assessment by the learner; reflection by the leaner; knowledge management by the course designer, etc. 

I-Help is built on multi-agent architecture.  Each learner has their own personal agent in which not only are the owner’s characteristics and 

information stored, but so is fragmented information of other learners, who have ever contacted the agent’s owner before. For example, the 

helper and helpee will evaluate each other and the results will update the knowledge profiles and be saved by each of the personal agents 

after each help session.  Therefore, there is no single learner model describing an individual learner. Rather, learner models are represented 

and stored in a distributed fashion and computed on as-needed basis [6].  The purpose-based learner modelling is derived from this as-

needed basis. Various information types can be modelled in I-Help system: knowledge, interests, cognitive style, eagerness, helpfulness, 

interaction preference, opinions of peers and user actions. The following section will focus on the purpose hierarchy, which is used to 

represent the purposes and contexts of the I-Help system.  

3.2 Purpose Hierarchy in I-Help 

A purpose can be regarded as a “packet” of data and processes. When a purpose is proposed, its packet is added to the current program 

environment so that its processes have direct access to what they need to know, without having overhead by needing to access to the entire 

knowledge of the whole system. It remains to be seen how to fill the detail of this scheme and how well it will work.  An important feature 

of purposes is that they can be organized into hierarchies. The system can thus be viewed at many levels, from the very general to the very 

specific; i.e. the purposes in the hierarchy are linked together with abstraction-refinement relations where movement from finer to coarser-

grained purposes.  Specific purposes inherit information and procedures from the more general purposes above them in the hierarchy. 

Similarly to classes in OOP, a specific purpose may disable or provide exceptions (redefine) the information / procedures defined in a more 

general purpose. The structure of the purpose hierarchy is similar to McCalla & Greer’s granularity hierarchy [35], which is a hierarchical 

semantic-network-style knowledge representation scheme in which an entity may be considered at a refined, detailed level or at a more 

general, approximate level. The more general purposes are called higher-level purposes, and the more specific purposes are called lower-

level purposes. Both of them might compute information that comes from the raw data (See Figure 1, the dotted arrow line indicate that 

there are more levels between them).  

Raw data (denoted by R1…Rn) can be retrieved from the environment. One source of the raw data is users themselves who provide some 

profile information before using the system. Another source is user data stored by some applications, such as login information stored in a 

database. Other raw data comes from peer assessment. This kind of data is stored by various agents in their learner models.   Thus, the raw 



data can be viewed as simple learner models created by various agents or applications and stored in a distributed fashion, i.e. there are 

many different “snapshots” for one user taken by different agents with different purposes in different contexts.  This user information can 

be reused for various purposes, different than the original purposes for which it was stored, when some specific learner modelling task 

arises. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inside each purpose, three kinds of information are stored: inputs, functions and outputs. The inputs denote the type of raw data from 

domain, which is relevant to the given purpose. The functions are sets of computational algorithms used to compute the inputs within the 

resource constraints by a particular computational agent in order to generate the desired outputs.  The outputs are partial learner models, 

which are useful, reliable and appropriate for the purpose.   

In Figure1, LPa…LPz represents lower-level purposes.  I have already developed some lower-level purposes for I-Help which concern 

different aspects of a learner, such as how knowledgeable is the learner; what is the learner’s reputation; how active is the learner. For 

example, one LP might be how reputable learner A is. The inputs to this LP should include raw data about how many persons have given A 

premium and/or discount in trading help and how many persons A has been banned by. The functions inside this LP should be the 

production rules used to calculate the reputation of A by given such inputs. The output is the degrees of reputation of A rated by low, 

medium or high. The higher-level purposes (denoted by HP1…HPn) shift focuses from finer-grained to coarser-grained with fewer 

constraints. Some of them can serve for class statistics, or for open learner modelling purposes. For example, one such purpose can be that 

the teacher may want to compare the level of activity of the student with those of her/his peers in order to evaluate the student; or that a 

HP1 HP2 

LPa 
LPb 

LPc LPd LPe

    Figure 1. Purpose hierarchies in I-Help system 
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learner can ask the system how other people perceive him/her as a helper; or how does his/her activity in posting questions / answers relate 

to the level of activity of a given group, in order to reflect on his/her performance.  

Partial learner models, as the output of various purposes, capture particular viewpoints of learners at various grain sizes. They are kept by 

each agent who has invoked this purpose, therefore are distributed and fragmented throughout the system. These partial learner models can 

be used as raw data, as inputs to other purposes.  

Since the purpose hierarchy can be viewed as a structured representation of domain models arrayed with respect to abstraction, each 

lower-level purpose can be a specification of a higher-level purpose. For example, we can define HP1 as comparing the characteristics of 

learner X to learner Y. The inputs to HP1 can be various aspects about X and Y, such as knowledge level, reputation, activity, eagerness, 

helpfulness, etc. The functions are computational procedures: computing the value of each parameter for both X and Y; comparing the 

value of X and Y over each parameter, etc. The computation is performed on a very general level.  The output is the result vector 

containing comparison result over each parameter. This higher-level purpose can be refined to some finer-grained lower-level purposes 

such as LPa: comparing knowledge level of learner X with learner Y about topic T.  The inputs to LPa are the records of knowledge level 

for T of X and Y. The functions for LPa can be simplified from HP1: comparing knowledge level for T of X to Y. Then the output will be 

generated by these functions. In summary, the purpose hierarchies capture the notion of context within a domain in which each purpose 

corresponds to a particular viewpoint from finer to coarser-grained on the domain. Moreover, such purpose hierarchies also prompt the 

automatic computing by re-using functions or procedures from other purposes. 

3.3 Discussion: Some Issues about Purpose-based Approach 

Purpose-based learner modelling is a complex process in which there are a lot of open questions (most of them also are questions for 

distributed learner modelling) involved, such as: How to define a purpose? How many purposes are enough? How to combine purposes? 

How general are those purposes? How useful are they? In other words, is the whole idea well defined and tractable? In this section, some 

issues which are not only related to purpose-based learner modelling, but also are common to the distributed learner modelling will be 

pointed out. Answering these questions still need further discussion and investigation. 

The first question is if the model created for a specific purpose should be kept by each agent or not. If an agent keeps models of all other 

agents whom it has ever contacted, the number of models in the system will grow exponentially and the system’s performance will become 

poor. It seems some models should be kept and some should be “forgotten”. The question is what information should be kept, what should 

be thrown away. Perhaps integrating purpose-based learner modelling with reinforcement learning will help to filter out information that is 

relatively less context dependent (i.e. reusable, such as learner’s characteristics profile, course and group information) and “forget” the 

strongly contextual information that can hardly be useful again.  If some models should be “forgotten”, when should they be thrown away? 



Is it immediately after use or when they become a little bit “older”? Some of these decisions will probably depend on the purpose for 

which the model was created. 

The second question is how to decide which information is relevant to a particular purpose or how one locates the agent that has a relevant 

model given the purpose. Vassileva et al. [54] suggest some criteria to be considered important when deciding which model to retrieve: 

why is the model needed (i.e. what is the current purpose for which information is needed); who has created the model; for what purpose 

the model was created; when was the model created and in what context was the model created. 

The third question is how to make sense of possibly inconsistent and even contradictory data. The data relevant to a specific purpose 

comes from different learner models and perhaps is not consistent. For example, a purpose is to evaluate student A’s knowledge level. 

Several personal agents who have contacted A will be asked to provide information about A’s knowledge. However, the partial models 

about A’s knowledge stored by these agents are often inconsistent; for example, B is thinking A is intelligent while C is thinking A is 

foolish. There could be many reasons for this inconsistency: the models were created in different contexts and time; the relationships 

between the learners e.g. are they friends or enemies may play a role; the models were created based on different topics, etc. In this case, 

the question is how to or even whether to resolve the inconsistency? 

The fourth question is how to interpret models created by other agents. The data stored in a learner model might be so specific that it only 

makes sense in the context in which the model was created. When a new agent comes and wants to re-use the model for its own purpose, 

the context may have changed.  A similar problem occurs with providing letters of reference for a job candidate by various referees. In this 

case, the models of the candidate should contain only information about the requested features relevant to the job and created in a relevant 

context and time. The modelling agent will not make an attempt to make them consistent, but will create its own model based on an 

interpretation of these models. The function of the respective modelling purpose should provide for interpreting evidence from input from 

various sources taking into account the source reputation, etc.  

4. CONCLUSION 

This paper reviews traditional learner modelling techniques in ITS with emphasis on the differences between procedural versus declarative 

knowledge representation and centralized versus decentralised models. In a distributed multi-agent software system (such as I-Help), 

learner modelling is distributed and the focus shifts from knowledge representation to the modelling process consisting of retrieving, 

integration and interpretation. Learner modelling will be performed for a specific purpose, within a particular context. 

The goal of the paper is to introduce a purpose-based approach for distributed active learner modelling. An important feature of purposes is 

that they can be organized into hierarchies. The system can thus be viewed at many levels of abstraction, from very general to very 

specific.  The purpose-based approach not only has the potential to speed computing but also to capture the context of computation. 



Some questions impact purposes directly such as how to define a purpose; how many purposes are enough; how general and useful are 

those purposes, etc. Some issues in the purpose-based distributed learner modelling still remain open for the moment, such as how to 

decide which information is relevant to a particular purpose; how to make sense of possibly inconsistent and even contradictory data; how 

to interpret models created by other agents and if the model created for a specific purpose should be kept by each agent or not.  

In conclusion, a deep exploration of purposes and how they affect learner modelling will not only be useful to systems, for example I-Help, 

but will also shed light on distributed learner modelling issues. In particular, the creation of purpose taxonomy and constructing the 

purpose hierarchy will be the first step in showing how to make such distributed learner modelling both tractable and effective. 
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