

A Multi-Agent Design of a Peer-Help Environment*

Julita Vassileva, Jim Greer, Gord McCalla, Ralph Deters,
Diego Zapata, Chhaya Mudgal, Shawn Grant

ARIES Lab, Department of Computer Science,
University of Saskatchewan, Canada

 jiv@cs.usask.ca

Abstract: This paper presents a multi-agent approach to design of adaptive
distributed collaborative and peer help environments, which addresses a number of
challenges: locating appropriate human and electronic resources depending on the
help-request, motivating users to help each other, and is easily extendible "in-depth"
and "in-breadth". We explore two novel approaches in user modelling: modelling of
user social characteristics and modelling the relationships between users to support
user collaboration and peer help. We show how adaptive behaviour of a
heterogeneous distributed system can arise as a result of negotiation of goal-oriented
autonomous cognitive agents. We are introducing an economic model in order to
motivate users to collaborate and provide peer help while protecting helpers from
getting overloaded with requests. Finally, we propose using multi-agent simulation
tools to test the appropriateness of various economic models for a learning
environment.

1. Introduction
I-Help is an integration of previously developed ARIES Lab tools for peer help in university

teaching. One of its components, CPR provides a subject-oriented discussion forum and moderated
FAQ-list supporting students with electronic help. Another component, PHelpS selects an
appropriate peer helper who can support the student with direct peer help via a synchronous chat
environment. The selection of an appropriate discussion forum, FAQ-article or human peer helper
is based on modelling learner knowledge in the context of the concept / topic structure of the
subject material. See [3] for a more detailed description of the I-Help Project. This paper presents
our ongoing research on distributing the centralized monolithic architecture of I-Help, by using a
multi agent-architecture [9]. There are a number of reasons for adopting a multi-agent approach to
developing AI-based educational systems. The rapid development of new technologies like
telecommunications, networking, and mobility leads to new types of working environments where
the borderline between working and learning disappears; just-in-time learning evolves into life-
long learning, "hybrid societies" emerge, consisting of real persons and electronic agents. An
important factor in this type of environments is that everyone and everything is connected, so
possibilities emerge for peer help, collaboration, and sharing resources (computational,
applications, human advice etc.). Four major consequences follow.

First, environments are needed that reduce complexity for users and allow them to concentrate
on their primary goals or tasks, as well as support their learning and collaboration. Second, it
becomes important to provide a source of motivation for benevolence and collaboration among
users, along with protection mechanisms, ensuring security of communications, privacy of personal
data, and equal chances for all to participate. Third, hard computational and software engineering
challenges arise in large scale distributed learning environments, which can be overcome by an
agent-based approach. Finally, the field of multi-agent systems opens a number of extremely
interesting and potentially useful research avenues concerning inter-agent negotiation, persuasion
and competition in agent societies. Modern society offers a rich reservoir of paradigms for
modelling multi-agent systems, e.g. social roles and cultural values, norms and conventions, social
movements and institutions, power and dominance distribution. We can learn from the adaptability,
robustness, scalability and reflexivity of social systems and use their building blocks to come up
with more powerful multi-agent technologies.

* Published in S. Lajoie, M. Vivet (Eds.) Artificial Intelligence and Education, Proceedings IAIED'99, Le
Mans, France, IOS Press, 38-46.

I-Help provides an excellent environment for studying these issues. A distributed, agent-based
architecture reflects naturally the distributed web-based environment in I-Help. If one views "live"
sessions with peer helpers and electronic peer help (discussion forum postings; on-line materials)
as help resources provided by some agents (human in the first case, software in the latter case),
then there is no virtual difference between humans and software agents. One can draw further
conclusions: it is no longer advantageous to have a monolithic ITS, which is like an almighty
teacher knowing the answer to any question that may arise in the learner. Networking provides a
possibility to find some narrow-focussed learning resource, suitable for the domain of the question.
This resource might be some courseware or a peer helper. In this way a human enters the teaching
loop to compensate for limitations related to educational software. It is no longer a necessary
condition that there is a powerful diagnostic component, to perform individualised teaching. A
human can “enter this loop” too and help to diagnose the reason for learners' misunderstanding.
This diagnosis can be later used by an ITS or by another human, taking the role of a helper to
provide the learner with advice. In this way a multi-agent architecture provides for a natural
synergy between humans and software agents (ITSs, diagnostic components, pedagogical expert
systems, on-line help systems, web-based pools of on-line materials, etc.)

Figure 1: Agent-based architecture

Figure 2. A multi-level structure of an
agent society.

2. Multi-level multi-agent architecture of I-Help

The adaptation within the multi-agent I-Help system is based on models of human users and
models of involved software applications. These are maintained by two classes of agents (see
Figure 1): personal agents (of human users) and application agents (of software applications).
These agents use a shared taxonomy (ontology) and a communication language. Each agent
manages specific resources of the user / application it represents, for example the knowledge
resources of the user on certain tasks, topics or concepts or web-based materials belonging to an
application. The agents use their resources to achieve the goals of their users, their own goals, and
goals of other agents. Thus all the agents are autonomous and goal-driven. The agents are cognitive
- they can plan the achievement of goals by means of decomposing them into sub-goals and
relating them to resources. In their goal pursuit the agents can also use resources borrowed from
other agents, i.e. they are collaborative. For this they have to negotiate and become involved in
persuasion and conflict resolution. Each agent possesses a model of its inter-agent relationships,
some of which reflect relationships between human users. Finally, the agents are mobile i.e. they
can travel from one computer to another, thus optimising resources and bandwidth. In this way, we
achieve a complex (multi-user, multi-application) adaptive (self-organised) system that supports
users in locating and using resources (other users, applications, and information) to achieve their
goals. A relatively detailed description of the multi-agent architecture we are using is presented in
[9, 10].

 The multi-agent architecture of I-Help can be viewed as a society of autonomous intelligent
agents. It involves various levels of organization, including intra- and inter-agent organization. A
schematic representation of the multi-level organization of the I-Help architecture (and the agent
society structure) is shown in Figure 2.

2.1. Basic Agent Infrastructure
 The environment in which all personal and application agents “live” guarantees a safe
existence and fair chance of getting computational resources for all agents. It provides resource
management, detects and limits or eliminates faulty and malicious agents, i.e. agents that consume
too many resources. It also takes care of appropriate agent migration for the purpose of optimal use
of resources. The agent environment consists of several self-explainable modules: monitor,
resource manager, communication module, transporter (for agent migration) and magistrate (to
make decisions in case of resource conflicts).
 The agents are implemented as a set of tasks, which are mapped on Java threads. Each agent
consists of two or more tasks: a Kernel task containing information about the state of the agent, a
Message task that ensures that the agent can communicate with other agents, and one or more
Working tasks that allow the agent to pursue specific goals. The anatomy of an agent at Level 1 is
shown in Figure 3. An agent is an instantiation of these classes of threads. There can be multiple
instantiations of such threads within one machine, therefore multiple agents can co-exist on one
machine. Considering a pool of networked machines, a society of agents is virtually independent
of the physical location of the threads of the individual agents. There can be an agent with a
Message thread running on one machine and Working threads running on other machines.

Figure 3. Anatomy of an agent on Level 1 (each

bubble is a thread).

Figure 4. Different abstract views over the

threads.

 Agents can be "put to sleep" at moments when they have no active Message or Working
threads. In this case, the Kernel thread is the only one that remains active, after storing information
of the agent's last state in a database. In order to optimize resources, we have to provide a
mechanism that allows an agent that has free Working or Message threads to offer them to other
agents to use. This can be achieved by introducing an abstract "task level" between the agents and
the actual processes running on the Java machine (see Figure 4). The upper two levels in Figure 4
are abstractions; only the lowest level exists in software consisting of Java objects and threads.
However, these objects and threads can be viewed as belonging to one task, or to one agent, or to
several cooperating / collaborating agents at the same time, since collaborating agents can be
viewed as one agent (sharing Work threads, Message threads and the corresponding tasks). Agents
communicate by sending messages (objects) to each other. Communication among agents is
implemented by a set of communication primitives, which is a subset of KQML (extended with
specific primitives). Upon receiving a speech act primitive from another agent, an agent has to
analyze it and respond to it depending on how the speech act corresponds to the agent's goals and
negotiation plan (strategy). Two different communication forms have been implemented:
• Peer communication: the agent uses an address book to generate a channel to the desired

agent. The channel takes care to send the message to the target agent. The use of a channel
enables migrations of agents during communication, which may be forced by computational
resource limitations. A channel offers a bi-directional communication line, which is useful for
private communication among agents.

• Bus communication: it offers communication among several agents. An agent can create, join,
leave, or send a message to a bus. Every message is broadcast to all members. A bus can be
itself a member of a bus. It is useful for sending requests among agents, but it may lead to a
flood of answers that the requesting agent will have to process.

2.2. Autonomous Cognitive Agents
Users, learners, applications and learning environments are represented by autonomous goal-

based social agents who communicate, co-operate, and compete in a multi-system and multi-user
distributed environment (see Figure 1). Each agent maintains three distinct models of the user /
application that it represents:
§ a model of the user’s/application’s goals (in the case of human users – the goals and the

preferences of the user),
§ a model of the resources available to the user / application, which in the case of a user, can

include his / her cognitive resources (i.e. there are several domain specific models of the user’s
knowledge, experience, skills etc.),

§ a model of the relationships of the user or application (such as personal friends, acquaintances,
agents which have proven to be useful, have offered help, and other agents who the
user/application “owes a favour” to).
These models allow the agent to be autonomous and reason about user goals, to plan about user

resources and to search for agents of other users or applications who have the same goal and/or
possess resources the user needs and doesn’t have. This level involves the knowledge
representation (user and application models) and reasoning mechanisms that make the agent
autonomous and cognitive.

Each agent has a pool of goals of two types. Intrinsic are goals that are built-in the agent, or
pre-programmed, such as "maximize utility", "save state periodically", "search for help-resource",
"offer service", "gain more resources", or "refresh a specific resource", etc. Extrinsic are goals that
are adopted from other agents, be it the user of the personal agent, other application agents, or
personal agents, like "find me a helper or knowledge resource on topic X", "ask your user to be a
helper on topic Y", "provide me with access to your resource Z".

Extrinsic goals are delegated explicitly to the agents, i.e. they don't infer the goals of other
agents. The personal agents have to be told explicitly by the user on what topic help is needed.
Inferring user goals by a personal agent is an attractive application of that classical diagnosis for
user modelling, however, since we don't want to invest effort in developing a smart and narrow
focussed mechanism for a certain domain, we let all goals be stated explicitly.

All goals of an agent are co-existing in a goal-space. The position of a goal in the goal space
depends on the goal's importance. The importance of each goal is a number which is calculated
/updated constantly by the reasoning mechanism of the agent. It depends on the inherent
characteristics of the goal, like whether it concerns the existence of the agent, the relationship with
the user (if it is a goal of a personal agent), on what type of goal it is. Extrinsic goals are usually
less important, depending on the importance of the relationship with the agent from whom the goal
is adopted.

The goal importance is a highly dynamic goal characteristic: with time flow or changes in the
environment, some goals raise in importance and some drop in importance. The constant analysis
of the importance of each goal is one of the central reasoning functions in an agent. This analysis is
plan-based and reactive, i.e. it happens periodically, but it can be also triggered by opportunities,
when certain changes in environment, or certain events occur. For example, if a help-request
arrives (a new goal enters the goal-space), the agent has to evaluate the relative importance of the
new goal with respect to the other goals, so that it can decide whether to pursue it or not. The
evaluation of a goal's importance follows a set of rules that involve the parameters of a goal. We
are experimenting with a simple PROLOG rule-based reasoner as the kernel of the goal-evaluation
thread of the agent.

One of the important intrinsic goals of an agent is the goal to maximize utility. Utility is defined
as a function of the number of goals achieved by the agent, their importance, and the amount and
cost of resources expended in the pursuit of the goals. This definition of utility is different from the
usual definition of utility for a rational agent, whose utility is measured usually by maximizing a
certain resource (e.g. money). We can model the behaviour of such a classical rational agent by
defining an important goal for the agent to acquire a certain resource (money). However, the above
definition gives us a huge flexibility in defining the agent's major drive (motivation). It can be
motivated, for example, to maximize the number of relationships, or to maximize some other
resource, let's say general user knowledge. The major agent motivation can be set to maximize the
number of user goals in which the agent helps achieving (an altruistic helpful agent). In this way,
by modifying the goal-importance of different agent goals, we can achieve very different agent
behaviour. The setting of the goal importance should be probably left to the user; in this way the
"character" of his/her agent can be "tuned" to be altruistic, greedy, sociable, helpful, hostile etc.

The state of resources of each agent reflects the resources of its user or of the application
represented by the agent. The agent manages the resources of the user/application just like a broker
manages the money of an investor. The resources of users are represented in user models and the
resources of software applications in application models. Both types of models are represented in a
database and are created by special applications (diagnostic applications) whose goal is to enter or

infer the state of resources from users' input or behaviour. The resources can be characterized
according to several dimensions, for example, whether they are perishable or not, whether they are
rechargeable or not, whether they are lendable or not. For example, time is perishable, not
rechargeable and not lendable; knowledge is (hopefully) not perishable, re-chargeable and lendable
(through teaching or peer help).

Knowledge resources are organized according to a taxonomy of knowledge topics / concepts /
skills depending on the domain. Each agent manages the set of knowledge resources of the user or
application it represents. We say that an application possesses a certain knowledge resource (say,
on topic X), if the application provides electronic source of information about this topic (web-page,
article in a FAQ, discussion thread on this topic, or if the application is supposed to teach the
topic). A user possesses a certain knowledge resource if the user model contains a certain
knowledge level on this topic.

In the context of I-Help the key to finding appropriate peer helpers is modelling the users'
ability, willingness and readiness to help. The readiness is a function of the inter-agent negotiation,
as will be explained in the next section. The ability is a model of the user's cognitive resources,
represented as an overlay over the concept (topic, skill, or task) structure. The willingness is a
model of the user's social behaviour, including a list of resources characterizing the user's
eagerness, helpfulness, and ranking in the group (class), i.e. a user "social model".

The initialization and updating of the user model is done by a number of independent diagnostic
applications. Each diagnostic application is represented by its own application agent who is
activated at certain times or is called by the personal agent at a certain period of time to update the
state of resources of the user. A diagnostic application updating the model of the user's knowledge
can be a diagnostic component of an ITS in a specific domain. In our case we have two different
diagnostic applications: one is an online self-evaluation questionnaire for students to evaluate their
own knowledge on the topics of the course and a set of on-line quizzes on the concepts which
students have to complete as they move through the course curriculum. The diagnostic application
may request help from a knowledgeable human "diagnoser" or "cognologist" to carry out the
diagnosis. In this way a human can enter the diagnosis loop.

The parameters in the social model are updated by several diagnostic applications. Diagnosis of
the user's eagerness is based on monitoring the user's on-line activity (for example the votes on
posting of this person in the discussion forum, the posted questions and answers in the discussion
forum, observation of the threads visited during discussion forum browsing, or browsing in the
web-based course materials). The user's class ranking is evaluated by taking into account the user's
marks on assignments. The corresponding diagnostic application provides an interface for the
teacher to input grades of the students from spreadsheet. Finally, the calculation of the helpfulness
parameter of the user is based on the number of times the person has given help and the feedback
on the quality of peer help received by the helpee. A diagnostic application monitors these peer-
help activities and the evaluation questionnaires after each session and enters values for certain
parameters in the user's social model.

Time is another important user resource. The amount of time available to the user can be
assigned directly by the user or inferred using a stereotype value, for example, if the user is on-line,
the user is available. Currency is a universal exchange resource for the society of agents. It may be
given an real value by exchanging it for goods (marks, candies or lottery chances) in the real world.

The user model employed by the agent when acting on behalf of its user or application also
contains information about the user's / application's relationships with other users / applications.
This representation allows an agent to know about certain interpersonal relationships existing
among users and certain dependencies existing among applications (for example, a diagnostic
system and a teaching system for a certain skill). The relationships are represented along several
dimensions: symmetry (dominant - peer), sign (positive - negative), type (between humans,
between agents, between applications). These dimensions play a role when selecting a partner for
negotiation and in the negotiation itself. It is very important to model qualitatively interpersonal
relationships, since they play a major role in human motivation to collaborate.

An agent needs to have at least four inference mechanisms:
§ monitoring the environment (i.e. the communication channel) for new coming goals, about

opportunities (unexpected resource availability, for example, the student has time which is an
opportunity for the agent to pursue the goal to increase the state of its currency resource by
making the student give help) for achieving some persistent, long term goals that are "sleeping"
at the moment; to estimate the goal importance periodically and opportunistically;

§ calculating the utility function and to decide how to maximize it by selecting a set of active
goals to pursue at every moment;

§ retrieving plans for goal achievement (eventually a plan generator may be integrated);
§ coordinating the execution of the plan by deploying the methods (Java threads) and resources

required by the goal-method (task) definitions.

An open question is whether all of these inference mechanisms have to be "on-board" the agent.
Currently, since the mechanisms are fairly simple, they are incorporated in every agent. However,
since they are the same for all agents, the virtual tasks running on the machine can be reused by
other agents.

2.3. Communicative agent
In pursuing their goals, the agents require resources that they may or may not have. In the latter

case, the agents can try to get access to resources of another agent, if this agent is willing to lend
them these resources. For example, an agent with the goal to find help for its user on topic X will
try to find agents of another user who knows about this topic, or of application that possess on-line
resources on this topic. Agents can also delegate the execution of a goal to another agent who is
better equipped with resources and methods for achieving the goal, for example, it can contact the
agent of an application who teaches this topic. In this case the second agent may adopt the goal of
the first agent, thus offering a service to the first agent. That means that agents have to offer
resources, services (contracted goal adoption) or relationships (e.g. increase in the relationship
importance or change the relationship sign or type) in exchange for the resources / service they
receive from other agents. The agents engage in negotiation until they agree about the price (in
terms of specific resource, service or relationship change. A negotiation protocol between agents
has been introduced including a set of speech primitives (KQML performatives). Negotiation is a
way for the agents to engage in collaboration [7]. There hasn’t been as much research on
negotiation among agents in multi-agent societies of deliberative and planning agents as in the field
of sub-cognitive agents [2]. Most of the studies of simulated collaboration involve agents that are
purely reactive [5]; [8].

2.4. Economic Model of the agent society

The location of knowledgeable helpers and appropriate on-line resources or applications could
have been achieved also without a multi-agent architecture. In fact, the first version of I-Help was a
centralized component. However, the evaluation of the system showed that it is hard to motivate
good students to serve as helpers for a longer time after the initial enthusiasm about the new system
has gone. In every learner community there are students who ask for help often and students who
nearly never ask for help. These latter are exactly the students who would make good peer helpers.
It is obvious that there should be some reward for these students, in order to encourage them to
participate -- to "pay them" with something that they consider useful. The need for some sort of
economic model is evident. However, this raises many questions: Should the economy based on
currency or on barter (exchange of goods) as proposed in [1]? If based on currency exchange, what
should be the real world equivalent of the fictitious currency: marks or goods? Should the economy
be based on the zero-sum assumption (when one gains, the other one loses) or on accumulating
some resource, like for example the global knowledge resource of all participants in the system?

The role of the economic model is to ensure a co-ordination mechanism in the agent society and
a source of motivation (reward) for the participating agents to offer their resources to other agents
who may need them and thus cooperate with each other. Without the notion of "currency" as a
resource which agents can accumulate and exchange, and an intrinsic goal for the agents to
maximize the amount of their currency, it will be hard to create a utility function that will
encourage agents having excess resources to offer them to other agents (i.e. good students to spend
their time in helping weaker students). By variations of the price with respect to quality of resource
(helper ranking) the agent economy will regulate the number of requests to the best helpers and will
provide motivation for them to participate in the system. By introducing currency, without
economic control mechanisms (e.g. taxation) we can expect a chaotic emergent behaviour from the
system of negotiating agents. We need to ensure stable prices, trust in the currency, to ensure that
the society will not become polarized with few very "rich" agents (what the agents of good students
are likely to become) and a lot of very "poor" agents of students who need help but can't afford to
buy it.

2.5. Control
 The purpose of the control level is to ensure fair chances for all agents to pursue their goals, and
to protect the society from criminal, misbehaving agents. It involves diagnosis of potential
troublemakers and punishing them by either isolating them (damaging their reputation, so that other
agents avoid having deals with them), or taking away their computational resources (putting them
in jail). Measures of soft control involve the ability of agents to gossip, i.e. the agents themselves
would communicate with each other regarding how their help transactions went, and introducing a
"Review agent" that would collate and organize preference data based on global agent experiences.
Measures taken under a hard social control scheme would include the banning of unethical agents,

monetary deductions, reprimands through e-mail, etc. Examples of hard social control measures are
introducing a "Refund Agent" which monitors transactions, and if some sort of obvious fraud was
detected, would revoke the transaction and possibly impose harsher measures on the agent who did
not live up to its contractual obligations. Another example of a hard control measure would be to
introduce an "Immigration/Police Agent". This agent would monitor the environment, looking for
agents who do not have permission to perform transaction or participate in other ways.

3. Current state of the project

The multi-agent approach allows our system to be developed simultaneously bottom-up and
top-down. Currently we have implemented the basic agent infrastructure, and we are experimenting
with agents with a very limited set of goals and resources (i.e. our user models are fairly simple).
All resources (user models) are kept in a database and the personal agents only have access to the
user models of their own users. The database is updated by several independent diagnostic
applications. One of them (diagnostic application denoted with "Q" in Figure 1) provides a quiz on
the concepts involved in the course. Another one ("M") monitors the user's activities (browsing,
postings, voting), checks time-stamps and updates the user's eagerness. A third diagnostic
application ("T") allows a teacher to enter marks on assignments, which are used to calculate the
ranking of the student in the class (a part of the user model). A fourth diagnostic application ("S")
allows the user to fill a self-evaluation form to initialize the knowledge component of the model.
The reasoning of the agents is currently very simple; it matches resources to goals in a 1:1 fashion,
and decides which goals to pursue by trying to maximize its utility function. Certain parameters of
the utility function can be defined by the user, thus defining the "character" of the personal agent
(greedy, altruistic, friendly, generous etc.). Currently the agents have no planning capabilities and
no knowledge about goal-decompositions. The agents' negotiation capabilities are also limited.
The only "reasoning" happening at this level involves determining the price for a resource / service
based on the state of resources of the agent, the ranking of the agent in the list of potential helpers
and the relationship with the user asking for help. Both of these are implemented as functions of a
number of parameters.

At the same time we are working on the upper levels of the multi-agent architecture, in a "top-
down" fashion, by using a multi-agent based simulation tool, SWARM [6] to predict the global
behavior of the system when multiple users and applications are negotiating and trading resources
and services. In this simulation, the real users and applications are replaced with "random"
functions producing certain input and the simulation concentrates only on the multi-agent society
and the economic activities in it. We want to predict what would be the behaviour of the system
depending on different distributions of agents with utility functions of various types. Will the
economy function better with more "greedy" or with more "friendly" agents? Under what
circumstances it is likely that "crooks" appear (e.g. cliques of agents who exchange fake help
among each other in order to maximize their currency resources)? How can we discourage such
behaviour with economic measures, and if not possible, what types of control / enforcement
measures are necessary? Based on SWARM, different ways of control will be simulated (soft -
based on "reputation" of agents and hard - based on forceful measures like taking away resources
from agents). It would be interesting to see what influence different simulated negotiation strategies
have on the flow of currency in the society of agents and to correlate this with the gained
knowledge in the system. Two student projects [4] and [11] are underway to investigate these
issues.

4. Discussion

I-Help is an user-adaptive distributed system deployed to support a collaborative community of
learners to locate help resources (electronic resources and human peer helpers) in a University
setting within a large course of introductory computer science. Adaptivity of the system is achieved
through multi-agent architecture with autonomous, cognitive, and collaborative agents.
Motivation is an important issue in learning environment, and especially so in collaborative and
peer help environments. By introducing an economic model we address this issue, hoping that it
will increase motivation for participation and collaboration among the users / learners. A multi-
agent architecture provides a natural testbed for implementing different kinds of economic models
and experimenting with them to test under which conditions such economic models will work out
to be beneficial for the learning of all participants in the system.

An important issue in systems for peer help is to protect good helpers from being overused. The
multi-agent approach allows regulating the offer and demand naturally by varying the price for
help. The personal agent of the helper can decide, depending on the priorities of the user, what the
price would be. This further depends on the load on the helper; the urgency of the request for the

helpee; the assumed quality of help provided (based on the helper's ranking in the list of helpers for
the topic). Of course the user (helper) makes the final decision.

We believe that it is very important to take into account the interpersonal relationships among
users when creating a peer help environment and we suspect that this will turn out to be even more
important in a collaboration environment. The interpersonal relationships (friends, "favours owed"
or "Bozo list") play a role in decisions to help or to refuse. In our multi-agent I-Help system, the
personal relationships of every user are represented as a part of his/her user model and managed as
a specific type of user resource by the personal agent. They are taken into account in calculating the
price of service or resources that the personal agent offers to other agents, i.e. there is a specific
discount for friends and an extra-charge for "Bozos". People who have been helped successfully
(positive evaluation by the helpee) can be added to the helper's list of relationships as "friends" or
"favours owed". At first glance it may seem that this would prevent people from collaborating, by
for example, making people help only their friends and not help people they don't know (which
makes the whole idea of I-Help senseless). However, the agents have other drives, such as
maximizing their profit, (which makes them help unknown people who they can charge more), as
well as maximizing the number of their relationships, which will pay back later since the agents of
"friends" will charge less in case the user asks them for help). This makes modelling relationships a
powerful motivation catalyst for cooperation and collaboration. To our best knowledge this is a
new idea in user modelling which we believe will have impact on the design of collaboration
environments.

The multi-agent approach which we adopted in the design of a peer-help and collaborative
learning environment I-Help offers software engineering advantages, like easy extendibility and
inter-operability. We can add new on-line materials, new applications (diagnostic systems, teaching
systems, discussion forums, collaboration environments), and add more users on line. Such a
system is less vulnerable when certain applications don't work, since it is essentially distributed:
every participant can be taken away without causing the overall system to crash.

Another software advantage is that the overall system works independently of the intelligence of
each individual agent. We start with fairly simple agents, with simple user models (limited
resources) and limited reasoning about goals and ways to achieve them, with very limited
negotiation strategies and gradually extend the agents capabilities by providing new applications
offering "reasoning" services, "negotiation" services etc. Gradually, with the development of more
sophisticated reasoning and negotiation mechanisms tuned to fit with functions controlling the
simulation so that the system behaves in a desired way we hope to achieve a powerful distributed
peer-help and collaboration learning environment.

Acknowledgement: We would like to acknowledge the TeleLearning NCE for financial support and to thank
members of the ARIES Lab "Agents" group for their input.

References:
1. Boyd G. (1997) Providing Real Learning with Virtual Currency, Proceedings of the International

Conference on Distance Education, Penn State Univ., June 1997.
2. Castelfranchi C. and Conte, R. 1992. Emergent functionality among intelligent systems: Cooperation

within and without minds. AI & Society, 6, 78-93.
3. Greer, J., McCalla, G., Cook, J., Collins, J., Kumar, V., Bishop, A. and Vassileva, J. (1998) The

Intelligent HelpDesk: Supporting Peer Help in a University Course, Proceedings ITS'98, San Antonio,
Texas.

4. Kostuik, K. (to appear) Simulating a decentralized economy in a multi-agent learning environment,
CMPT400 Honours Project, Dept. of Computer Science, University of Saskatchewan.

5. Mataric, M. (1992) Designing Emergent Behaviors: From Local Interactions to Collective Intelligence.
In Simulation of Adaptive Behavior 2. MIT Press. Cambridge

6. Minar, M., Burkhart, R., Langton, C., Askenazy, M. 1996, The Swarm Simulation System: A Toolkit fo r
Building Multi-agent Simulations. Santa Fe Institute.

7. Mudgal, Ch, (to appear). Negotiation and conflict resolution in multi-agent systems: a game theoretic
approach, MSc Thesis Proposal. Dept. of Computer Science, University of Saskatchewan.

8. Steels, L. (1990) Cooperation between distributed agents through self-organization. In Y. Demazeau and
J.P. Mueller (eds.) Decentralized AI North-Holland, Elsevier

9. Vassileva J. (1998) Goal-Based Autonomous Social Agents Supporting Adaptation and Teaching in a
Distrib uted Environment, Proceedings of ITS'98, San Antonio, Texas..

10. Vassileva J., Deters R., Greer J., McCalla G., Kumar V., Mudgal C. (1998) A Multi-Agent Architecture
for Peer-Help in a University Course, Proc. Workshop on Pedagogical Agents at ITS'98, San Antonio,
Texas, 64-68.

11. Winter, M. (to appear) Simulated Social Control in a multi-agent based learning environment, CMPT405
Project, Dept. of Computer Science, University of Saskatchewan.

